Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Innerness of derivations into noncommutative symmetric spaces is determined commutatively (2301.03874v1)

Published 10 Jan 2023 in math.OA and math.FA

Abstract: Let $E=E(0,\infty)$ be a symmetric function space and $E(\mathcal{M},\tau)$ be a symmetric operator space associated with a semifinite von Neumann algebra with a faithful normal semifinite trace. Our main result identifies the class of spaces $E$ for which every derivation $\delta:\mathcal{A}\to E(\mathcal{M},\tau)$ is necessarily inner for each $C*$-subalgebra $\mathcal{A}$ in the class of all semifinite von Neumann algebras $\mathcal{M}$ as those with the Levi property.

Citations (1)

Summary

We haven't generated a summary for this paper yet.