Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attribute-Centric Compositional Text-to-Image Generation (2301.01413v1)

Published 4 Jan 2023 in cs.CV

Abstract: Despite the recent impressive breakthroughs in text-to-image generation, generative models have difficulty in capturing the data distribution of underrepresented attribute compositions while over-memorizing overrepresented attribute compositions, which raises public concerns about their robustness and fairness. To tackle this challenge, we propose ACTIG, an attribute-centric compositional text-to-image generation framework. We present an attribute-centric feature augmentation and a novel image-free training scheme, which greatly improves model's ability to generate images with underrepresented attributes. We further propose an attribute-centric contrastive loss to avoid overfitting to overrepresented attribute compositions. We validate our framework on the CelebA-HQ and CUB datasets. Extensive experiments show that the compositional generalization of ACTIG is outstanding, and our framework outperforms previous works in terms of image quality and text-image consistency.

Citations (11)

Summary

We haven't generated a summary for this paper yet.