Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PIE-QG: Paraphrased Information Extraction for Unsupervised Question Generation from Small Corpora (2301.01064v1)

Published 3 Jan 2023 in cs.CL and cs.AI

Abstract: Supervised Question Answering systems (QA systems) rely on domain-specific human-labeled data for training. Unsupervised QA systems generate their own question-answer training pairs, typically using secondary knowledge sources to achieve this outcome. Our approach (called PIE-QG) uses Open Information Extraction (OpenIE) to generate synthetic training questions from paraphrased passages and uses the question-answer pairs as training data for a LLM for a state-of-the-art QA system based on BERT. Triples in the form of <subject, predicate, object> are extracted from each passage, and questions are formed with subjects (or objects) and predicates while objects (or subjects) are considered as answers. Experimenting on five extractive QA datasets demonstrates that our technique achieves on-par performance with existing state-of-the-art QA systems with the benefit of being trained on an order of magnitude fewer documents and without any recourse to external reference data sources.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Dinesh Nagumothu (1 paper)
  2. Bahadorreza Ofoghi (3 papers)
  3. Guangyan Huang (6 papers)
  4. Peter W. Eklund (4 papers)
Citations (5)