Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Optimization of Video-based AI Inference Tasks in MEC-assisted Augmented Reality Systems (2301.01010v1)

Published 3 Jan 2023 in cs.NI, cs.IT, and math.IT

Abstract: The high computational complexity and energy consumption of AI algorithms hinder their application in augmented reality (AR) systems. However, mobile edge computing (MEC) makes it possible to solve this problem. This paper considers the scene of completing video-based AI inference tasks in the MEC system. We formulate a mixed-integer nonlinear programming problem (MINLP) to reduce inference delays, energy consumption and to improve recognition accuracy. We give a simplified expression of the inference complexity model and accuracy model through derivation and experimentation. The problem is then solved iteratively by using alternating optimization. Specifically, by assuming that the offloading decision is given, the problem is decoupled into two sub-problems, i.e., the resource allocation problem for the devices set that completes the inference tasks locally, and that for the devices set that offloads tasks. For the problem of offloading decision optimization, we propose a Channel-Aware heuristic algorithm. To further reduce the complexity, we propose an alternating direction method of multipliers (ADMM) based distributed algorithm. The ADMM-based algorithm has a low computational complexity that grows linearly with the number of devices. Numerical experiments show the effectiveness of proposed algorithms. The trade-off relationship between delay, energy consumption, and accuracy is also analyzed.

Citations (14)

Summary

We haven't generated a summary for this paper yet.