Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MnTTS2: An Open-Source Multi-Speaker Mongolian Text-to-Speech Synthesis Dataset (2301.00657v1)

Published 11 Dec 2022 in eess.AS, cs.AI, and cs.CL

Abstract: Text-to-Speech (TTS) synthesis for low-resource languages is an attractive research issue in academia and industry nowadays. Mongolian is the official language of the Inner Mongolia Autonomous Region and a representative low-resource language spoken by over 10 million people worldwide. However, there is a relative lack of open-source datasets for Mongolian TTS. Therefore, we make public an open-source multi-speaker Mongolian TTS dataset, named MnTTS2, for the benefit of related researchers. In this work, we prepare the transcription from various topics and invite three professional Mongolian announcers to form a three-speaker TTS dataset, in which each announcer records 10 hours of speeches in Mongolian, resulting 30 hours in total. Furthermore, we build the baseline system based on the state-of-the-art FastSpeech2 model and HiFi-GAN vocoder. The experimental results suggest that the constructed MnTTS2 dataset is sufficient to build robust multi-speaker TTS models for real-world applications. The MnTTS2 dataset, training recipe, and pretrained models are released at: \url{https://github.com/ssmlkl/MnTTS2}

Citations (1)

Summary

We haven't generated a summary for this paper yet.