Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditional Diffusion Based on Discrete Graph Structures for Molecular Graph Generation (2301.00427v2)

Published 1 Jan 2023 in cs.LG and q-bio.BM

Abstract: Learning the underlying distribution of molecular graphs and generating high-fidelity samples is a fundamental research problem in drug discovery and material science. However, accurately modeling distribution and rapidly generating novel molecular graphs remain crucial and challenging goals. To accomplish these goals, we propose a novel Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation. Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through stochastic differential equations (SDE) and derive discrete graph structures as the condition for reverse generative processes. We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states. We further utilize ordinary differential equation (ODE) solvers for efficient graph sampling, based on the semi-linear structure of the probability flow ODE. Experiments on diverse datasets validate the effectiveness of our framework. Particularly, the proposed method still generates high-quality molecular graphs in a limited number of steps. Our code is provided in https://github.com/GRAPH-0/CDGS.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Han Huang (71 papers)
  2. Leilei Sun (36 papers)
  3. Bowen Du (34 papers)
  4. Weifeng Lv (26 papers)
Citations (29)
Github Logo Streamline Icon: https://streamlinehq.com