Curvature bound of Dyson Brownian Motion (2301.00262v5)
Abstract: We construct a strongly local symmetric Dirichlet form on the configuration space $\Upsilon$ whose symmetrising (thus also invariant) measure is $\mathsf{sine}\beta$, which is the law of the sine $\beta$ ensemble for every $\beta>0$. For every $\beta>0$, this Dirichlet form satisfies the Bakry-\'Emery gradient estimate $\mathsf{BE}(K, \infty)$ with $K=0$. This implies various functional inequalities, including the local Poincar\'e inequality, the local log-Sobolev inequality and the local hyper-contractivity. We then introduce an $L2$-transportation-type extended distance $\bar{\sf d}{\Upsilon}$ on $\Upsilon$, and prove the dimension-free Harnack inequality and several Lipschitz regularisation estimates of the $L2$-semigroup associated with the Dirichlet form in terms of $\bar{\sf d}{\Upsilon}$. As a result of $\mathsf{BE}(0,\infty)$, we obtain that the dual semigroup on the space of probability measures over $\Upsilon$, endowed with a Benamou--Brenier-like extended distance $\mathsf{W}{\mathcal E}$, satisfies the evolutional variation inequality with respect to the Bolzmann--Shannon entropy $\mathsf{Ent}{\mathsf{sine}\beta}$ associated with $\mathsf{sine}\beta$. Furthermore, the dual semigroup is characterised as the unique $\mathsf{W}{\mathcal E}$-gradient flow in the space of probability measures with respect to $\mathsf{Ent}{\mathsf{sine}\beta}$. Finally, we provide a sufficient condition for $\mathsf{BE}(K, \infty)$ beyond $\mathsf{sine}_\beta$ and apply it to the infinite particle diffusion whose symmetrising measure is the law of the $1$-dimensional $(\beta,s)$-circular Riesz gas with $\beta>0$ and $0<s<1$.
- Optimal transport, Cheeger energies and contractivity of dynamic transport distances in extended spaces. Nonlinear Anal., 137:77–134, 2016.
- Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics - ETH Zürich. Birkhäuser, 2ndsuperscript2nd2^{\textrm{nd}}2 start_POSTSUPERSCRIPT nd end_POSTSUPERSCRIPT edition, 2008.
- Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math., 395:289–391, 2014.
- Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J., 163(7):1405–1490, 2014.
- Bakry–Émery Curvature-Dimension Condition and Riemannian Ricci Curvature Bounds. Ann. Probab., 43(1):339–404, 2015.
- Analysis and Geometry of Markov Diffusion Operators, volume 348 of Grundlehren der mathematischen Wissenschaften. Springer, 2014.
- Dirichlet forms and analysis on Wiener space. De Gruyter, 1991.
- Hypercontractivité de semi-groupes de diffusion. C. R. Acad. Sci. ParisSér. I Math., 299:775–778, 1984.
- Dello Schiavo, L. Ergodic Decomposition of Dirichlet Forms via Direct Integrals and Applications. Potential Anal., 2021.
- DLR Equations and Rigidity for the Sine-Beta Process. Commun. Pure Appl. Math., pages 172–222, 2020.
- Configuration spaces over singular spaces –I. Dirichlet-Form and Metric Measure Geometry –. arXiv:2109.03192v2 (version 2), 2021.
- On the Rademacher and Sobolev-to-Lipschitz Properties for Strongly Local Dirichlet Spaces. J. Func. Anal., 281(11):Online first, 2021.
- Configuration Spaces over Singular Spaces II – Curvature. arXiv:2205.01379, 2022.
- Number-rigidity and β𝛽\betaitalic_β-circular riesz gas. Arxiv:2104.09408, 2021.
- F. J.. Dyson. A brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys, 3:1191–1198, 1962.
- Curvature bounds for configuration spaces. Calc. Var., 54:307–430, 2015.
- Optimal transport of stationary point processes: Metric structure, gradient flow and convexity of the specificentropy. arXiv: 2304.11145, 2023.
- Markov Processes —Characterization and Convergence—. Wiley Inter-science, A JOHN WILEY & SONS, INC., PUBLICATION, 1986.
- Dirichlet forms and symmetric Markov processes, volume 19 of De Gruyter Studies in Mathematics. de Gruyter, extended edition, 2011.
- Fukushima, M. Distorted Brownian motions and BV functions. Trends in Probability and Analysis, N. Kono, N-R. Shieh, eds, pages 143–150, 1997.
- Ghosh, S. Determinantal processes and completeness of random exponentials: the critical case. Probab. Theory Relat. Fields, 163(3):643–665, 2015.
- On quotients of spaces with Ricci curvature bounded below. J. Funct. Anal., 275:1368–1446, 2018.
- Molecules as metric measure spaces with kato-bounded ricci curvature. Comptes Rendus. Mathématique, 358:595–602, 2020.
- Small-Time Gaussian Behavior of Symmetric Diffusion Semigroups. Ann. Probab., 31(3):1254–1295, 2003.
- The variational formulation of the fokker–planck equation. SIAM Journal on Mathematical Analysis, 29:1–17, 1998.
- Uniqueness of dirichlet forms related to infinite systems of interacting brownian motions. Potential Anal., 55:639–676, 2021.
- Eigenvalue statistics for cmv matrices: from poisson to clock via random matrix ensembles. Duke Math. J., 146 (3)::361–399, 2009.
- Functional inequalities for the heat flow on time-dependent metric measure spaces. J. London Math. Soc., 104-2:926–955, 2021.
- Non-equilibrium dynamics of Dyson’s model with an infinite number of particles. Comm. Math. Phys., 293(2):469–497, 2010.
- H. Li. Dimension-Free Harnack Inequalities on 𝖱𝖢𝖣(K,∞)𝖱𝖢𝖣𝐾\mathsf{RCD}(K,\infty)sansserif_RCD ( italic_K , ∞ ) Spaces. J. Theoret. Probab., 29:1280–1297, 2015.
- Dirichlet forms-closability and change of speed measure, Infinite dimensional analysis and stochastic processes. Research Notes in Math. S. Albeverio, ed., Pitman, 124:119–144, 1985.
- Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer, 1990.
- Construction of Diffusions on Configuration Spaces. Osaka J. Math., 37:273–314, 2000.
- Uniqueness of dirichlet forms related to infinite systems of interacting brownian motions. J. Funct. Anal., 278, 2020.
- Nakano, F. Level statistics for one-dimensional schrödinger operators and gaussian beta ensemble. J. Stat. Phys., 156(1):66–93, 2014.
- Multilevel dynamical correlation functions for dyson’s brownian motion model of random matrices. Physics Letters A, 247:801–850, 1998.
- Rigidity of the Sineβ𝛽{}_{\beta}start_FLOATSUBSCRIPT italic_β end_FLOATSUBSCRIPT process. Electron. Commun. Probab., 23:1–8, 2018.
- Osada, H. Dirichlet Form Approach to Infinite-Dimensional Wiener Processes with Singular Interactions. Comm. Math. Phys., 176:117–131, 1996.
- Osada, H. Infinite-dimensional stochastic differential equations related to random matrices. Prob. Theory Relat. Fields, 153(1):471–509, 2012.
- Osada, H. Interacting Brownian Motions in Infinite Dimensions with Logarithmic Interaction Potentials. Ann. Probab., 41(1):1–49, 2013.
- Methods of Modern Mathematical Physics II – Fourier Analysis, Self-Adjointness. Academic Press, New York, London, 1975.
- Methods of Modern Mathematical Physics I – Functional Analysis. Academic Press, New York, London, 1980.
- Rademacher’s Theorem on Configuration Spaces and Applications. J. Funct. Anal., 169(2):325–356, 1999.
- Spohn, H. Interacting Brownian Particles: A Study of Dyson’s Model. Hydrodynamic Behavior and Interacting Particle Systems, pages 151–179, 1987.
- Sturm, K.-T. On the geometry of metric measure spaces. I. Acta Math., 196:65–131, 2006.
- Tsai, L.-C. Infinite dimensional stochastic differential equations for dyson’s model. Probability Theory and Related Fields, 166:801–850, 2016.
- Villani, C. Optimal transport, old and new, volume 338 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 2009.
- Continuum limits of random matrices and the brownian carousel. Invent. math., 177(3):463–508, 2009.
- Wang. F-Y. Analysis for diffusion processes on Riemannian manifolds, volume 18. World Scientific,, 2014.
Collections
Sign up for free to add this paper to one or more collections.