Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 191 tok/s Pro
2000 character limit reached

Curvature bound of Dyson Brownian Motion (2301.00262v5)

Published 31 Dec 2022 in math.PR, math-ph, math.DG, math.FA, and math.MP

Abstract: We construct a strongly local symmetric Dirichlet form on the configuration space $\Upsilon$ whose symmetrising (thus also invariant) measure is $\mathsf{sine}\beta$, which is the law of the sine $\beta$ ensemble for every $\beta>0$. For every $\beta>0$, this Dirichlet form satisfies the Bakry-\'Emery gradient estimate $\mathsf{BE}(K, \infty)$ with $K=0$. This implies various functional inequalities, including the local Poincar\'e inequality, the local log-Sobolev inequality and the local hyper-contractivity. We then introduce an $L2$-transportation-type extended distance $\bar{\sf d}{\Upsilon}$ on $\Upsilon$, and prove the dimension-free Harnack inequality and several Lipschitz regularisation estimates of the $L2$-semigroup associated with the Dirichlet form in terms of $\bar{\sf d}{\Upsilon}$. As a result of $\mathsf{BE}(0,\infty)$, we obtain that the dual semigroup on the space of probability measures over $\Upsilon$, endowed with a Benamou--Brenier-like extended distance $\mathsf{W}{\mathcal E}$, satisfies the evolutional variation inequality with respect to the Bolzmann--Shannon entropy $\mathsf{Ent}{\mathsf{sine}\beta}$ associated with $\mathsf{sine}\beta$. Furthermore, the dual semigroup is characterised as the unique $\mathsf{W}{\mathcal E}$-gradient flow in the space of probability measures with respect to $\mathsf{Ent}{\mathsf{sine}\beta}$. Finally, we provide a sufficient condition for $\mathsf{BE}(K, \infty)$ beyond $\mathsf{sine}_\beta$ and apply it to the infinite particle diffusion whose symmetrising measure is the law of the $1$-dimensional $(\beta,s)$-circular Riesz gas with $\beta>0$ and $0<s<1$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. Optimal transport, Cheeger energies and contractivity of dynamic transport distances in extended spaces. Nonlinear Anal., 137:77–134, 2016.
  2. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics - ETH Zürich. Birkhäuser, 2ndsuperscript2nd2^{\textrm{nd}}2 start_POSTSUPERSCRIPT nd end_POSTSUPERSCRIPT edition, 2008.
  3. Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math., 395:289–391, 2014.
  4. Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J., 163(7):1405–1490, 2014.
  5. Bakry–Émery Curvature-Dimension Condition and Riemannian Ricci Curvature Bounds. Ann. Probab., 43(1):339–404, 2015.
  6. Analysis and Geometry of Markov Diffusion Operators, volume 348 of Grundlehren der mathematischen Wissenschaften. Springer, 2014.
  7. Dirichlet forms and analysis on Wiener space. De Gruyter, 1991.
  8. Hypercontractivité de semi-groupes de diffusion. C. R. Acad. Sci. ParisSér. I Math., 299:775–778, 1984.
  9. Dello Schiavo, L. Ergodic Decomposition of Dirichlet Forms via Direct Integrals and Applications. Potential Anal., 2021.
  10. DLR Equations and Rigidity for the Sine-Beta Process. Commun. Pure Appl. Math., pages 172–222, 2020.
  11. Configuration spaces over singular spaces –I. Dirichlet-Form and Metric Measure Geometry –. arXiv:2109.03192v2 (version 2), 2021.
  12. On the Rademacher and Sobolev-to-Lipschitz Properties for Strongly Local Dirichlet Spaces. J. Func. Anal., 281(11):Online first, 2021.
  13. Configuration Spaces over Singular Spaces II – Curvature. arXiv:2205.01379, 2022.
  14. Number-rigidity and β𝛽\betaitalic_β-circular riesz gas. Arxiv:2104.09408, 2021.
  15. F. J.. Dyson. A brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys, 3:1191–1198, 1962.
  16. Curvature bounds for configuration spaces. Calc. Var., 54:307–430, 2015.
  17. Optimal transport of stationary point processes: Metric structure, gradient flow and convexity of the specificentropy. arXiv: 2304.11145, 2023.
  18. Markov Processes —Characterization and Convergence—. Wiley Inter-science, A JOHN WILEY & SONS, INC., PUBLICATION, 1986.
  19. Dirichlet forms and symmetric Markov processes, volume 19 of De Gruyter Studies in Mathematics. de Gruyter, extended edition, 2011.
  20. Fukushima, M. Distorted Brownian motions and BV functions. Trends in Probability and Analysis, N. Kono, N-R. Shieh, eds, pages 143–150, 1997.
  21. Ghosh, S. Determinantal processes and completeness of random exponentials: the critical case. Probab. Theory Relat. Fields, 163(3):643–665, 2015.
  22. On quotients of spaces with Ricci curvature bounded below. J. Funct. Anal., 275:1368–1446, 2018.
  23. Molecules as metric measure spaces with kato-bounded ricci curvature. Comptes Rendus. Mathématique, 358:595–602, 2020.
  24. Small-Time Gaussian Behavior of Symmetric Diffusion Semigroups. Ann. Probab., 31(3):1254–1295, 2003.
  25. The variational formulation of the fokker–planck equation. SIAM Journal on Mathematical Analysis, 29:1–17, 1998.
  26. Uniqueness of dirichlet forms related to infinite systems of interacting brownian motions. Potential Anal., 55:639–676, 2021.
  27. Eigenvalue statistics for cmv matrices: from poisson to clock via random matrix ensembles. Duke Math. J., 146 (3)::361–399, 2009.
  28. Functional inequalities for the heat flow on time-dependent metric measure spaces. J. London Math. Soc., 104-2:926–955, 2021.
  29. Non-equilibrium dynamics of Dyson’s model with an infinite number of particles. Comm. Math. Phys., 293(2):469–497, 2010.
  30. H. Li. Dimension-Free Harnack Inequalities on 𝖱𝖢𝖣⁢(K,∞)𝖱𝖢𝖣𝐾\mathsf{RCD}(K,\infty)sansserif_RCD ( italic_K , ∞ ) Spaces. J. Theoret. Probab., 29:1280–1297, 2015.
  31. Dirichlet forms-closability and change of speed measure, Infinite dimensional analysis and stochastic processes. Research Notes in Math. S. Albeverio, ed., Pitman, 124:119–144, 1985.
  32. Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer, 1990.
  33. Construction of Diffusions on Configuration Spaces. Osaka J. Math., 37:273–314, 2000.
  34. Uniqueness of dirichlet forms related to infinite systems of interacting brownian motions. J. Funct. Anal., 278, 2020.
  35. Nakano, F. Level statistics for one-dimensional schrödinger operators and gaussian beta ensemble. J. Stat. Phys., 156(1):66–93, 2014.
  36. Multilevel dynamical correlation functions for dyson’s brownian motion model of random matrices. Physics Letters A, 247:801–850, 1998.
  37. Rigidity of the Sineβ𝛽{}_{\beta}start_FLOATSUBSCRIPT italic_β end_FLOATSUBSCRIPT process. Electron. Commun. Probab., 23:1–8, 2018.
  38. Osada, H. Dirichlet Form Approach to Infinite-Dimensional Wiener Processes with Singular Interactions. Comm. Math. Phys., 176:117–131, 1996.
  39. Osada, H. Infinite-dimensional stochastic differential equations related to random matrices. Prob. Theory Relat. Fields, 153(1):471–509, 2012.
  40. Osada, H. Interacting Brownian Motions in Infinite Dimensions with Logarithmic Interaction Potentials. Ann. Probab., 41(1):1–49, 2013.
  41. Methods of Modern Mathematical Physics II – Fourier Analysis, Self-Adjointness. Academic Press, New York, London, 1975.
  42. Methods of Modern Mathematical Physics I – Functional Analysis. Academic Press, New York, London, 1980.
  43. Rademacher’s Theorem on Configuration Spaces and Applications. J. Funct. Anal., 169(2):325–356, 1999.
  44. Spohn, H. Interacting Brownian Particles: A Study of Dyson’s Model. Hydrodynamic Behavior and Interacting Particle Systems, pages 151–179, 1987.
  45. Sturm, K.-T. On the geometry of metric measure spaces. I. Acta Math., 196:65–131, 2006.
  46. Tsai, L.-C. Infinite dimensional stochastic differential equations for dyson’s model. Probability Theory and Related Fields, 166:801–850, 2016.
  47. Villani, C. Optimal transport, old and new, volume 338 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 2009.
  48. Continuum limits of random matrices and the brownian carousel. Invent. math., 177(3):463–508, 2009.
  49. Wang. F-Y. Analysis for diffusion processes on Riemannian manifolds, volume 18. World Scientific,, 2014.
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube