Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics informed neural networks for elliptic equations with oscillatory differential operators (2212.13531v2)

Published 27 Dec 2022 in math.NA and cs.NA

Abstract: Physics informed neural network (PINN) based solution methods for differential equations have recently shown success in a variety of scientific computing applications. Several authors have reported difficulties, however, when using PINNs to solve equations with multiscale features. The objective of the present work is to illustrate and explain the difficulty of using standard PINNs for the particular case of divergence-form elliptic partial differential equations (PDEs) with oscillatory coefficients present in the differential operator. We show that if the coefficient in the elliptic operator $a{\epsilon}(x)$ is of the form $a(x/\epsilon)$ for a 1-periodic coercive function $a(\cdot)$, then the Frobenius norm of the neural tangent kernel (NTK) matrix associated to the loss function grows as $1/\epsilon2$. This implies that as the separation of scales in the problem increases, training the neural network with gradient descent based methods to achieve an accurate approximation of the solution to the PDE becomes increasingly difficult. Numerical examples illustrate the stiffness of the optimization problem.

Citations (1)

Summary

We haven't generated a summary for this paper yet.