Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-sample Behrens--Fisher problems for high-dimensional data: a normal reference F-type test (2212.13372v1)

Published 27 Dec 2022 in math.ST, stat.CO, and stat.TH

Abstract: The problem of testing the equality of mean vectors for high-dimensional data has been intensively investigated in the literature. However, most of the existing tests impose strong assumptions on the underlying group covariance matrices which may not be satisfied or hardly be checked in practice. In this article, an F-type test for two-sample Behrens--Fisher problems for high-dimensional data is proposed and studied. When the two samples are normally distributed and when the null hypothesis is valid, the proposed F-type test statistic is shown to be an F-type mixture, a ratio of two independent chi-square-type mixtures. Under some regularity conditions and the null hypothesis, it is shown that the proposed F-type test statistic and the above F-type mixture have the same normal and non-normal limits. It is then justified to approximate the null distribution of the proposed F-type test statistic by that of the F-type mixture, resulting in the so-called normal reference F-type test. Since the F-type mixture is a ratio of two independent chi-square-type mixtures, we employ the Welch--Satterthwaite chi-square-approximation to the distributions of the numerator and the denominator of the F-type mixture respectively, resulting in an approximation F-distribution whose degrees of freedom can be consistently estimated from the data. The asymptotic power of the proposed F-type test is established. Two simulation studies are conducted and they show that in terms of size control, the proposed F-type test outperforms two existing competitors. The proposed F-type test is also illustrated by a real data example.

Citations (1)

Summary

We haven't generated a summary for this paper yet.