Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SuperGF: Unifying Local and Global Features for Visual Localization (2212.13105v1)

Published 23 Dec 2022 in cs.CV

Abstract: Advanced visual localization techniques encompass image retrieval challenges and 6 Degree-of-Freedom (DoF) camera pose estimation, such as hierarchical localization. Thus, they must extract global and local features from input images. Previous methods have achieved this through resource-intensive or accuracy-reducing means, such as combinatorial pipelines or multi-task distillation. In this study, we present a novel method called SuperGF, which effectively unifies local and global features for visual localization, leading to a higher trade-off between localization accuracy and computational efficiency. Specifically, SuperGF is a transformer-based aggregation model that operates directly on image-matching-specific local features and generates global features for retrieval. We conduct experimental evaluations of our method in terms of both accuracy and efficiency, demonstrating its advantages over other methods. We also provide implementations of SuperGF using various types of local features, including dense and sparse learning-based or hand-crafted descriptors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Wenzheng Song (3 papers)
  2. Ran Yan (21 papers)
  3. Boshu Lei (8 papers)
  4. Takayuki Okatani (63 papers)

Summary

We haven't generated a summary for this paper yet.