Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Linear Complexity Low-Rank Approximation of General Kernel Matrices: A Geometric Approach (2212.12674v2)

Published 24 Dec 2022 in math.NA, cs.LG, and cs.NA

Abstract: A general, {\em rectangular} kernel matrix may be defined as $K_{ij} = \kappa(x_i,y_j)$ where $\kappa(x,y)$ is a kernel function and where $X={x_i}{i=1}m$ and $Y={y_i}{i=1}n$ are two sets of points. In this paper, we seek a low-rank approximation to a kernel matrix where the sets of points $X$ and $Y$ are large and are arbitrarily distributed, such as away from each other, ``intermingled'', identical, etc. Such rectangular kernel matrices may arise, for example, in Gaussian process regression where $X$ corresponds to the training data and $Y$ corresponds to the test data. In this case, the points are often high-dimensional. Since the point sets are large, we must exploit the fact that the matrix arises from a kernel function, and avoid forming the matrix, and thus ruling out most algebraic techniques. In particular, we seek methods that can scale linearly or nearly linear with respect to the size of data for a fixed approximation rank. The main idea in this paper is to {\em geometrically} select appropriate subsets of points to construct a low rank approximation. An analysis in this paper guides how this selection should be performed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. M. Ainsworth and T. Vejchodský. Fully computable robust a posteriori error bounds for singularly perturbed reaction–diffusion problems. Numerische Mathematik, 119(2):219–243, 2011.
  2. C. R. Anderson. An implementation of the fast multipole method without multipoles. SIAM J. Sci. Statist. Comput., 13(4):923–947, 1992.
  3. Spectral gap error bounds for improving CUR matrix decomposition and the Nyström method. In Artificial Intelligence and Statistics, pages 19–27, 2015.
  4. K. E. Atkinson. The numerical solution of the eigenvalue problem for compact integral operators. Transactions of the American Mathematical Society, 129(3):458–465, 1967.
  5. J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm. Nature, 324:446–449, December 1986.
  6. Kernel-independent adaptive construction of h 2-matrix approximations. Numerische Mathematik, 150(1):1–32, 2022.
  7. M. Bebendorf. Approximation of boundary element matrices. Numer. Math., 86(4):565–589, 2000.
  8. M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of collocation matrices. Computing, 70(1):1–24, 2003.
  9. Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
  10. S. Börm and L. Grasedyck. Hybrid cross approximation of integral operators. Numer. Math., 101(2):221–249, 2005.
  11. Introduction to hierarchical matrices with applications. Eng. Anal. Bound. Elem., 27(5):405–422, 2003.
  12. D. Braess and J. Schöberl. Equilibrated residual error estimator for edge elements. Mathematics of Computation, 77(262):651–672, 2008.
  13. D. Cai. Physics-informed distribution transformers via molecular dynamics and deep neural networks. Journal of Computational Physics, 468:111511, 2022.
  14. D. Cai and Z. Cai. A hybrid a posteriori error estimator for conforming finite element approximations. Computer Methods in Applied Mechanics and Engineering, 339:320 – 340, 2018.
  15. Robust equilibrated a posteriori error estimator for higher order finite element approximations to diffusion problems. Numerische Mathematik, 144(1):1–21, 2020.
  16. SMASH: Structured matrix approximation by separation and hierarchy. Numerical Linear Algebra with Applications, 25(6):e2204, 2018.
  17. AUTM Flow: Atomic Unrestricted Time Machine for Monotonic Normalizing Flows. In Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence, volume 180, pages 266–274. PMLR, 2022.
  18. Fast deterministic approximation of symmetric indefinite kernel matrices with high dimensional datasets. SIAM Journal on Matrix Analysis and Applications, 43(2):1003–1028, 2022.
  19. D. Cai and P. S. Vassilevski. Eigenvalue problems for exponential-type kernels. Computational Methods in Applied Mathematics, 20(1):61–78, 2020.
  20. Fast low-rank kernel matrix factorization using skeletonized interpolation. SIAM Journal on Scientific Computing, 41(3):A1652–A1680, 2019.
  21. On the compression of low rank matrices. SIAM Journal on Scientific Computing, 26(4):1389–1404, 2005.
  22. E. Chow and Y. Saad. Preconditioned Krylov subspace methods for sampling multivariate Gaussian distributions. SIAM J. Sci. Comput., 36(2):A588–A608, 2014.
  23. A. Cortinovis and D. Kressner. Low-rank approximation in the frobenius norm by column and row subset selection. SIAM Journal on Matrix Analysis and Applications, 41(4):1651–1673, 2020.
  24. The farthest point strategy for progressive image sampling. IEEE Transactions on Image Processing, 6(9):1305–1315, 1997.
  25. Accelerating parallel hierarchical matrix-vector products via data-driven sampling. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 749–758, 2020.
  26. A direct solver with o(n) complexity for integral equations on one-dimensional domains. Frontiers of Mathematics in China, 7(2):217–247, 2012.
  27. The maximal-volume concept in approximation by low-rank matrices. Contemporary Mathematics, 280:47–52, 2001.
  28. Quasioptimality of skeleton approximation of a matrix in the Chebyshev norm. In Doklady Mathematics, volume 83, pages 374–375, 2011.
  29. L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., 73:325–348, 1987.
  30. M. Gu and S. C. Eisenstat. Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J. Sci. Comput., 17(4):848–869, 1996.
  31. W. Hackbusch. Hierarchical Matrices: Algorithms and Analysis. Springer Series in Computational Mathematics. Springer Berlin Heidelberg, 2015.
  32. On ℋ2superscriptℋ2\mathcal{H}^{2}caligraphic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-matrices. In Hans-Joachim Bungartz, Ronald H. W. Hoppe, and Christoph Zenger, editors, Lectures on Applied Mathematics, pages 9–29. Springer, Berlin, 2000.
  33. On the fast matrix multiplication in the boundary element method by panel clustering. Numerische Mathematik, 54(4):463–491, 1989.
  34. Distributed tensor decomposition for large scale health analytics. In The World Wide Web Conference, pages 659–669, 2019.
  35. Fast and accurate tensor decomposition without a high performance computing machine. In 2020 IEEE International Conference on Big Data (Big Data), pages 163–170. IEEE, 2020.
  36. Phenotyping through semi-supervised tensor factorization (psst). In AMIA Annual Symposium Proceedings, volume 2018, page 564. American Medical Informatics Association, 2018.
  37. Boundary integral equations. Applied Mathematical Sciences. Springer, Berlin, Heidelberg, 2008.
  38. R. Kress. Linear Integral Equations. Applied Mathematical Sciences. Springer New York, 2013.
  39. L. Kuipers and H. Niederreiter. Uniform distribution of sequences. Courier Corporation, 2012.
  40. Fast sparse gaussian process methods: The informative vector machine. Advances in neural information processing systems, 15, 2002.
  41. WR Madych and SA Nelson. Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation. Journal of Approximation Theory, 70(1):94–114, 1992.
  42. CUR matrix decompositions for improved data analysis. Proceedings of the National Academy of Sciences, 106(3):697–702, 2009.
  43. Randomized numerical linear algebra: Foundations and algorithms. Acta Numerica, 29:403–572, 2020.
  44. Yuji Nakatsukasa. Fast and stable randomized low-rank matrix approximation. arXiv preprint arXiv:2009.11392, 2020.
  45. H. Niederreiter. Random number generation and quasi-Monte Carlo methods. SIAM, 1992.
  46. Geodesic remeshing using front propagation. International Journal of Computer Vision, 69(1):145–156, 2006.
  47. V. Rokhlin. Rapid solution of integral equations of classical potential theory. Journal of Computational Physics, 60(2):187–207, 1985.
  48. Farthest-point optimized point sets with maximized minimum distance. In Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics, pages 135–142, 2011.
  49. Sparse greedy gaussian process regression. Advances in neural information processing systems, 13, 2000.
  50. Sparse gaussian processes using pseudo-inputs. Advances in neural information processing systems, 18, 2005.
  51. X. Sun and N.P. Pitsianis. A matrix version of the fast multipole method. SIAM Rev., 43(2):289–300, 2001.
  52. E. Tyrtyshnikov. Mosaic-skeleton approximations. CALCOLO, 33(1):47–57, Jun 1996.
  53. E. Tyrtyshnikov. Incomplete cross approximation in the mosaic-skeleton method. Computing, 64(4):367–380, Jun 2000.
  54. Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer, 2013.
  55. R. Verfürth. A posteriori error estimation and adaptive mesh-refinement techniques. Journal of Computational and Applied Mathematics, 50(1):67 – 83, 1994.
  56. R. Verfürth. Robust a posteriori error estimates for stationary convection-diffusion equations. SIAM Journal on Numerical Analysis, 43(4):1766–1782, 2005.
  57. Using the Nyström method to speed up kernel machines. In Advances in Neural Information Processing Systems, pages 682–688, 2001.
  58. X. Xing and E. Chow. Interpolative decomposition via proxy points for kernel matrices. SIAM Journal on Matrix Analysis and Applications, 41(1):221–243, 2020.
  59. Low-rank kernel matrix approximation using skeletonized interpolation with endo-or exo-vertices. arXiv preprint arXiv:1807.04787, 2018.
  60. A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2):337–357, 1987.
Citations (5)

Summary

We haven't generated a summary for this paper yet.