Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for time fractional sub-diffusion and diffusion-wave equations (2212.12366v1)

Published 23 Dec 2022 in math.NA and cs.NA

Abstract: In this article, we have studied the convergence behavior of the Dirichlet-Neumann and Neumann- Neumann waveform relaxation algorithms for time-fractional sub-diffusion and diffusion-wave equations in 1D & 2D for regular domains, where the dimensionless diffusion coefficient takes different constant values in different subdomains. We first observe that different diffusion coefficients lead to different relaxation parameters for optimal convergence. Using these optimal relaxation parameters, our analysis estimates the slow superlinear convergence of the algorithms when the fractional order of the time derivative is close to zero, almost finite step convergence when the order is close to two, and in between, the superlinear convergence becomes faster as fractional order increases. So, we have successfully caught the transition of convergence rate with the change of fractional order of the time derivative in estimates and verified them with numerical experiments.

Summary

We haven't generated a summary for this paper yet.