Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Closer Look at Some Recent Proof Compression-Related Claims (2212.12150v1)

Published 23 Dec 2022 in cs.CC and cs.LO

Abstract: Gordeev and Haeusler [GH19] claim that each tautology $\rho$ of minimal propositional logic can be proved with a natural deduction of size polynomial in $|\rho|$. This builds on work from Hudelmaier [Hud93] that found a similar result for intuitionistic propositional logic, but for which only the height of the proof was polynomially bounded, not the overall size. They arrive at this result by transforming a proof in Hudelmaier's sequent calculus into an equivalent tree-like proof in Prawitz's system of natural deduction, and then compressing the tree-like proof into an equivalent DAG-like proof in such a way that a polynomial bound on the height and foundation implies a polynomial bound on the overall size. Our paper, however, observes that this construction was performed only on minimal implicational logic, which we show to be weaker than the minimal propositional logic for which they claim the result (see Section 4.2). Simply extending the logic systems used to cover minimal propositional logic would not be sufficient to recover the results of the paper, as it would entirely disrupt proofs of a number of the theorems that are critical to proving the main result. Relying heavily on their aforementioned work, Gordeev and Haeusler [GH20] claim to establish NP=PSPACE. The argument centrally depends on the polynomial bound on proof size in minimal propositional logic. Since we show that that bound has not been correctly established by them, their purported proof does not correctly establish NP=PSPACE.

Summary

We haven't generated a summary for this paper yet.