Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Count-Free Weisfeiler--Leman and Group Isomorphism (2212.11247v3)

Published 21 Dec 2022 in cs.DS, cs.CC, cs.LO, and math.GR

Abstract: We investigate the power of counting in Group Isomorphism. We first leverage the count-free variant of the Weisfeiler--Leman Version I algorithm for groups (Brachter & Schweitzer, LICS 2020) in tandem with limited non-determinism and limited counting to improve the parallel complexity of isomorphism testing for several families of groups. These families include: - Direct products of non-Abelian simple groups. - Coprime extensions, where the normal Hall subgroup is Abelian and the complement is an $O(1)$-generated solvable group with solvability class $\text{poly} \log \log n$. This notably includes instances where the complement is an $O(1)$-generated nilpotent group. This problem was previously known to be in $\textsf{P}$ (Qiao, Sarma, & Tang, STACS 2011), and the complexity was recently improved to $\textsf{L}$ (Grochow & Levet, FCT 2023). - Graphical groups of class $2$ and exponent $p > 2$ (Mekler, J. Symb. Log., 1981) arising from the CFI and twisted CFI graphs (Cai, F\"urer, & Immerman, Combinatorica 1992) respectively. In particular, our work improves upon previous results of Brachter & Schweitzer (LICS 2020). We finally show that the $q$-ary count-free pebble game is unable to distinguish even Abelian groups. This extends the result of Grochow & Levet (ibid), who established the result in the case of $q = 1$. The general theme is that some counting appears necessary to place Group Isomorphism into $\textsf{P}$.

Citations (5)

Summary

We haven't generated a summary for this paper yet.