Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Material Property Prediction using Graphs based on Generically Complete Isometry Invariants (2212.11246v3)

Published 19 Dec 2022 in physics.comp-ph, cs.LG, and physics.chem-ph

Abstract: The structure-property hypothesis says that the properties of all materials are determined by an underlying crystal structure. The main obstacle was the ambiguity of conventional crystal representations based on incomplete or discontinuous descriptors that allow false negatives or false positives. This ambiguity was resolved by the ultra-fast Pointwise Distance Distribution (PDD), which distinguished all periodic structures in the world's largest collection of real materials (Cambridge Structural Database). The state-of-the-art results in property predictions were previously achieved by graph neural networks based on various graph representations of periodic crystals, including the Crystal Graph with vertices at all atoms in a crystal unit cell. This work adapts the Pointwise Distance Distribution for a simpler graph whose vertex set is not larger than the asymmetric unit of a crystal structure. The new Distribution Graph reduces mean-absolute-error by 0.6\%-12\% while having 44\%-88\% of the number of vertices when compared to the crystal graph when applied on the Materials Project and Jarvis-DFT datasets using CGCNN and ALIGNN. Methods for hyper-parameters selection for the graph are backed by the theoretical results of the Pointwise Distance Distribution and are then experimentally justified.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com