Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ECoHeN: A Hypothesis Testing Framework for Extracting Communities from Heterogeneous Networks (2212.10513v1)

Published 20 Dec 2022 in cs.SI and stat.ME

Abstract: Community discovery is the general process of attaining assortative communities from a network: collections of nodes that are densely connected within yet sparsely connected to the rest of the network. While community discovery has been well studied, few such techniques exist for heterogeneous networks, which contain different types of nodes and possibly different connectivity patterns between the node types. In this paper, we introduce a framework called ECoHeN, which \textbf{e}xtracts \textbf{co}mmunities from a \textbf{he}terogeneous \textbf{n}etwork in a statistically meaningful way. Using a heterogeneous configuration model as a reference distribution, ECoHeN identifies communities that are significantly more densely connected than expected given the node types and connectivity of its membership. Specifically, the ECoHeN algorithm extracts communities one at a time through a dynamic set of iterative updating rules, is guaranteed to converge, and imposes no constraints on the type composition of extracted communities. To our knowledge this is the first discovery method that distinguishes and identifies both homogeneous and heterogeneous, possibly overlapping, community structure in a network. We demonstrate the performance of ECoHeN through simulation and in application to a political blogs network to identify collections of blogs which reference one another more than expected considering the ideology of its' members.

Citations (1)

Summary

We haven't generated a summary for this paper yet.