Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wind Power Scenario Generation Using Graph Convolutional Generative Adversarial Network (2212.10454v2)

Published 19 Dec 2022 in cs.LG, cs.AI, cs.SY, and eess.SY

Abstract: Generating wind power scenarios is very important for studying the impacts of multiple wind farms that are interconnected to the grid. We develop a graph convolutional generative adversarial network (GCGAN) approach by leveraging GAN's capability in generating large number of realistic scenarios without using statistical modeling. Unlike existing GAN-based wind power data generation approaches, we design GAN's hidden layers to match the underlying spatial and temporal characteristics. We advocate the use of graph filters to embed the spatial correlation among multiple wind farms, and a one-dimensional (1D) convolutional layer to represent the temporal feature filters. The proposed graph and feature filter design significantly reduce the GAN model complexity, leading to improvements in training efficiency and computation complexity. Numerical results using real wind power data from Australia demonstrate that the scenarios generated by the proposed GCGAN exhibit more realistic spatial and temporal statistics than other GAN-based outputs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.