Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Two geometric models for graded skew-gentle algebras (2212.10369v2)

Published 20 Dec 2022 in math.RT, math.CT, and math.GT

Abstract: In Part 1, we classify (indecomposable) objects in the perfect derived category $\mathrm{per}\Lambda$ of a graded skew-gentle algebra $\Lambda$, generalizing technique/results of Burban-Drozd and Deng to the graded setting. We also use the usual punctured marked surface $\mathbf{S}\lambda$ with grading (and a full formal arc system) to give a geometric model for this classification. In Part2, we introduce a new surface $\mathbf{S}\lambda_*$ with binaries from $\mathbf{S}\lambda$ by replacing each puncture $P$ by a boundary component $P$ (called a binary) with one marked point, and composing an equivalent relation $D{P}2=\mathrm{id}$, where $D{_p}$ is the Dehn twist along $P$. Certain indecomposable objects in $\mathrm{per}\Lambda$ can be also classified by graded unknotted arcs on $\mathbf{S}\lambda*$. Moreover, using this new geometric model, we show that the intersections between any two unknotted arcs provide a basis of the morphisms between the corresponding arc objects, i.e. formula $\mathrm{Int}=\mathrm{dim}\mathrm{Hom}$ holds.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)