Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong uniform convergence of Laplacians of random geometric and directed kNN graphs on compact manifolds (2212.10287v1)

Published 20 Dec 2022 in math.PR and stat.ML

Abstract: Consider $n$ points independently sampled from a density $p$ of class $\mathcal{C}2$ on a smooth compact $d$-dimensional sub-manifold $\mathcal{M}$ of $\mathbb{R}m$, and consider the generator of a random walk visiting these points according to a transition kernel $K$. We study the almost sure uniform convergence of this operator to the diffusive Laplace-Beltrami operator when $n$ tends to infinity. This work extends known results of the past 15 years. In particular, our result does not require the kernel $K$ to be continuous, which covers the cases of walks exploring $k$NN-random and geometric graphs, and convergence rates are given. The distance between the random walk generator and the limiting operator is separated into several terms: a statistical term, related to the law of large numbers, is treated with concentration tools and an approximation term that we control with tools from differential geometry. The convergence of $k$NN Laplacians is detailed.

Citations (2)

Summary

We haven't generated a summary for this paper yet.