Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

InterMulti:Multi-view Multimodal Interactions with Text-dominated Hierarchical High-order Fusion for Emotion Analysis (2212.10030v1)

Published 20 Dec 2022 in cs.AI

Abstract: Humans are sophisticated at reading interlocutors' emotions from multimodal signals, such as speech contents, voice tones and facial expressions. However, machines might struggle to understand various emotions due to the difficulty of effectively decoding emotions from the complex interactions between multimodal signals. In this paper, we propose a multimodal emotion analysis framework, InterMulti, to capture complex multimodal interactions from different views and identify emotions from multimodal signals. Our proposed framework decomposes signals of different modalities into three kinds of multimodal interaction representations, including a modality-full interaction representation, a modality-shared interaction representation, and three modality-specific interaction representations. Additionally, to balance the contribution of different modalities and learn a more informative latent interaction representation, we developed a novel Text-dominated Hierarchical High-order Fusion(THHF) module. THHF module reasonably integrates the above three kinds of representations into a comprehensive multimodal interaction representation. Extensive experimental results on widely used datasets, (i.e.) MOSEI, MOSI and IEMOCAP, demonstrate that our method outperforms the state-of-the-art.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Feng Qiu (72 papers)
  2. Wanzeng Kong (13 papers)
  3. Yu Ding (70 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.