Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structured matrix recovery from matrix-vector products (2212.09841v2)

Published 19 Dec 2022 in math.NA and cs.NA

Abstract: Can one recover a matrix efficiently from only matrix-vector products? If so, how many are needed? This paper describes algorithms to recover matrices with known structures, such as tridiagonal, Toeplitz, Toeplitz-like, and hierarchical low-rank, from matrix-vector products. In particular, we derive a randomized algorithm for recovering an $N \times N$ unknown hierarchical low-rank matrix from only $\mathcal{O}((k+p)\log(N))$ matrix-vector products with high probability, where $k$ is the rank of the off-diagonal blocks, and $p$ is a small oversampling parameter. We do this by carefully constructing randomized input vectors for our matrix-vector products that exploit the hierarchical structure of the matrix. While existing algorithms for hierarchical matrix recovery use a recursive "peeling" procedure based on elimination, our approach uses a recursive projection procedure.

Citations (8)

Summary

We haven't generated a summary for this paper yet.