Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving Quantified Modal Logic Problems by Translation to Classical Logics (2212.09570v3)

Published 19 Dec 2022 in cs.LO and cs.AI

Abstract: This article describes an evaluation of Automated Theorem Proving (ATP) systems on problems taken from the QMLTP library of first-order modal logic problems. Principally, the problems are translated to both typed first-order and higher-order logic in the TPTP language using an embedding approach, and solved using first-order resp. higher-order logic ATP systems and model finders. Additionally, the results from native modal logic ATP systems are considered, and compared with the results from the embedding approach. The findings are that the embedding process is reliable and successful when state-of-the-art ATP systems are used as backend reasoners, The first-order and higher-order embeddings perform similarly, native modal logic ATP systems have comparable performance to classical systems using the embedding for proving theorems, native modal logic ATP systems are outperformed by the embedding approach for disproving conjectures, and the embedding approach can cope with a wider range of modal logics than the native modal systems considered.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. P.B. Andrews. General Models and Extensionality. Journal of Symbolic Logic, 37(2):395--397, 1972.
  2. R. Barcan. A Functional Calculus of First Order Based on Strict Implication. Journal of Symbolic Logic, 11:1--16, 1946.
  3. C. Benzmüller. Universal (Meta-)Logical Reasoning: Recent Successes. Science of Computer Programming, 172:48--62, 2019.
  4. Higher-order Semantics and Extensionality. Journal of Symbolic Logic, 69(4):1027--1088, 2004.
  5. C. Benzmüller and D. Miller. Automation of Higher-Order Logic. In D. Gabbay, J. Siekmann, and J. Woods, editors, Handbook of the History of Logic, volume 9 - Computational Logic, pages 215--254. North Holland, Elsevier, 2014.
  6. Implementing and Evaluating Provers for First-order Modal Logics. In L. De Raedt, C. Bessiere, D. Dubois, P. Doherty, P. Frasconi, F. Heintz, and P. Lucas, editors, Proceedings of the 20th European Conference on Artificial Intelligence, Frontiers in Artificial Intelligence and Applications, pages 163--168. IOS Press, 2012.
  7. C. Benzmüller and L. Paulson. Quantified Multimodal Logics in Simple Type Theory. Logica Universalis, 7(1):7--20, 2013.
  8. C. Benzmüller and T. Raths. HOL Based First-order Modal Logic Provers. In K. McMillan, A. Middeldorp, and A. Voronkov, editors, Proceedings of the 19th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, number 8312 in Lecture Notes in Computer Science, pages 127--136. Springer-Verlag, 2013.
  9. C. Benzmüller and B. Woltzenlogel Paleo. The Inconsistency in Gödel’s Ontological Argument: A Success Story for AI in Metaphysics. In S. Kambhampati, editor, Proceedings of the 25th International Joint Conference on Artificial Intelligence, pages 936--942. AAAI Press, 2016.
  10. A. Bhayat and G. Reger. A Combinator-based Superposition Calculus for Higher-Order Logic. In N. Peltier and V. Sofronie-Stokkermans, editors, Proceedings of the 10th International Joint Conference on Automated Reasoning, number 12166 in Lecture Notes in Artificial Intelligence, pages 278--296, 2020.
  11. Modal Logic. Cambridge University Press, 2001.
  12. Handbook of Modal Logic. Number 3 in Studies in Logic and Practical Reasoning. Elsevier Science, 2006.
  13. J. Blanchette and T. Nipkow. Nitpick: A Counterexample Generator for Higher-Order Logic Based on a Relational Model Finder. In M. Kaufmann and L. Paulson, editors, Proceedings of the 1st International Conference on Interactive Theorem Proving, number 6172 in Lecture Notes in Computer Science, pages 131--146. Springer-Verlag, 2010.
  14. T. Braüner and S. Ghilardi. First-order modal logic. In P. Blackburn, J. van Benthem, and F. Wolter, editors, Handbook of Modal Logic, pages 549--620. Elsevier B.V., 2007.
  15. A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic Logic, 5:56--68, 1940.
  16. LoTREC: The Generic Tableau Prover for Modal and Description Logics. In R. Gore, A. Leitsch, and T. Nipkow, editors, Proceedings of the International Joint Conference on Automated Reasoning, number 2083 in Lecture Notes in Artificial Intelligence, pages 453--458. Springer-Verlag, 2001.
  17. M. Fitting and R. Mendelsohn. First-Order Modal Logic. Kluwer, 1998.
  18. F. Frege. Grundgesetze der Arithmetik. Jena, 1893,1903.
  19. J. Garson. Modal Logic. In E. Zalta, editor, Stanford Encyclopedia of Philosophy. Stanford University, 2018.
  20. J. Gibbons and N. Wu. Folding Domain-specific Languages: Deep and Shallow Embeddings (Functional Pearl). In J. Jeuring and M. Chakravarty, editors, Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming, pages 339--347. ACM Press, 2014.
  21. Theorem Provers for Every Normal Modal Logic. In T. Eiter and D. Sands, editors, Proceedings of the 21st International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, number 46 in EPiC Series in Computing, pages 14--30. EasyChair Publications, 2017.
  22. M. Gordon and T. Melham. Introduction to HOL, a Theorem Proving Environment for Higher Order Logic. Cambridge University Press, 1993.
  23. J. Harrison. HOL Light: A Tutorial Introduction. In M. Srivas and A. Camilleri, editors, Proceedings of the 1st International Conference on Formal Methods in Computer-Aided Design, number 1166 in Lecture Notes in Computer Science, pages 265--269. Springer-Verlag, 1996.
  24. L. Henkin. Completeness in the Theory of Types. Journal of Symbolic Logic, 15(2):81--91, 1950.
  25. U. Hustadt and R. Schmidt. MSPASS: Modal Reasoning by Translation and First-Order Resolution. In R. Dyckhoff, editor, Proceedings of the International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, number 1847 in Lecture Notes in Artificial Intelligence, pages 67--71. Springer-Verlag, 2000.
  26. S. Kripke. Semantical Considerations on Modal Logic. Acta Philosophica Fennica, 16:83--94, 1963.
  27. KSP: Architecture, Refinements, Strategies and Experiments. Journal of Automated Reasoning, 64(3):461--484, 2020.
  28. Isabelle/HOL: A Proof Assistant for Higher-Order Logic. Number 2283 in Lecture Notes in Computer Science. Springer-Verlag, 2002.
  29. H.J. Ohlbach. Semantics Based Translation Methods for Modal Logics. Journal of Logic and Computation, 1(5):691--746, 1991.
  30. J. Otten. MleanCoP: A Connection Prover for First-Order Modal Logic. In S. Demri, D. Kapur, and C. Weidenbach, editors, Proceedings of the 7th International Joint Conference on Automated Reasoning, number 8562 in Lecture Notes in Artificial Intelligence, pages 269--276, 2014.
  31. J. Otten. The nanoCoP 2.0 Connection Provers for Classical, Intuitionistic and Modal Logics. In A. Das and S. Negri, editors, Proceedings of the 30th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, number 12842 in Lecture Notes in Artificial Intelligence, pages 236--249. Springer-Verlag, 2021.
  32. J. Otten and G. Sutcliffe. Using the TPTP Language for Representing Derivations in Tableau and Connection Calculi. In B. Konev, R. Schmidt, and S. Schulz, editors, Proceedings of the Workshop on Practical Aspects of Automated Reasoning, 5th International Joint Conference on Automated Reasoning, pages 90--100, 2010.
  33. PVS: Combining Specification, Proof Checking, and Model Checking. In R. Alur and T.A. Henzinger, editors, Computer-Aided Verification, number 1102 in Lecture Notes in Computer Science, pages 411--414. Springer-Verlag, 1996.
  34. Efficient Local Reductions to Basic Modal Logic. In A. Platzer and G. Sutcliffe, editors, Proceedings of the 28th International Conference on Automated Deduction, number 12699 in Lecture Notes in Computer Science, pages 76--92. Springer-Verlag, 2021.
  35. T. Raths and J. Otten. The QMLTP Problem Library for First-Order Modal Logics. In B. Gramlich, D. Miller, and U. Sattler, editors, Proceedings of the 6th International Joint Conference on Automated Reasoning, number 7364 in Lecture Notes in Artificial Intelligence, pages 454--461. Springer-Verlag, 2012.
  36. Faster, Higher, Stronger: E 2.3. In P. Fontaine, editor, Proceedings of the 27th International Conference on Automated Deduction, number 11716 in Lecture Notes in Computer Science, pages 495--507. Springer-Verlag, 2019.
  37. Computer Supported Mathematics with OMEGA. Journal of Applied Logic, 4(4):533--559, 2006.
  38. A. Steen. An extensible logic embedding tool for lightweight non-classical reasoning (short paper). In B. Konev, C. Schon, and A. Steen, editors, Proceedings of the 8th Workshop on Practical Aspects of Automated Reasoning, number 3201 in CEUR Workshop Proceedings, page Online, 2022.
  39. A. Steen. logic-embedding v1.8.4, 2024. DOI: 10.5281/zenodo.10819185.
  40. A. Steen and C. Benzmüller. The Higher-Order Prover Leo-III. In D. Galmiche, S. Schulz, and R. Sebastiani, editors, Proceedings of the 8th International Joint Conference on Automated Reasoning, number 10900 in Lecture Notes in Artificial Intelligence, pages 108--116, 2018.
  41. Supplemental material to ‘‘Solving Quantified Modal Logic Problems by Translation to Classical Logics’’, 2024. DOI: 10.5281/zenodo.10802221.
  42. Solving Modal Logic Problems by Translation to Higher-order Logic. In A. Herzig, J. Luo, and P. Pardo, editors, Proceedings of the 5th International Conference on Logic and Argumentation, number 14156 in Lecture Notes in Computer Science, pages 25--43. Springer, 2023. (Best paper award).
  43. StarExec: a Cross-Community Infrastructure for Logic Solving. In S. Demri, D. Kapur, and C. Weidenbach, editors, Proceedings of the 7th International Joint Conference on Automated Reasoning, number 8562 in Lecture Notes in Artificial Intelligence, pages 367--373, 2014.
  44. G. Sutcliffe. TPTP, TSTP, CASC, etc. In V. Diekert, M. Volkov, and A. Voronkov, editors, Proceedings of the 2nd International Symposium on Computer Science in Russia, number 4649 in Lecture Notes in Computer Science, pages 6--22. Springer-Verlag, 2007.
  45. G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure. From CNF to TH0, TPTP v6.4.0. Journal of Automated Reasoning, 59(4):483--502, 2017.
  46. G. Sutcliffe. The Logic Languages of the TPTP World. Logic Journal of the IGPL, 31(6):1153--1169, 2023.
  47. G. Sutcliffe and C. Benzmüller. Automated Reasoning in Higher-Order Logic using the TPTP THF Infrastructure. Journal of Formalized Reasoning, 3(1):1--27, 2010.
  48. TSTP Data-Exchange Formats for Automated Theorem Proving Tools. In W. Zhang and V. Sorge, editors, Distributed Constraint Problem Solving and Reasoning in Multi-Agent Systems, number 112 in Frontiers in Artificial Intelligence and Applications, pages 201--215. IOS Press, 2004.
  49. A General Theorem Prover for Quantified Modal Logics. In U. Egly and C. Fermüller, editors, Proceedings of the 11th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, number 2381 in Lecture Notes in Computer Science, pages 266--280. Springer, 2002.
  50. The Tableau Prover Generator MetTeL2. In L. Fariñas del Cerro, A. Herzig, and J. Mengin, editors, Proceedings of the 13th European conference on Logics in Artificial Intelligence, number 7519 in Lecture Notes in Computer Science, pages 492--495. Springer, 2012.
  51. Handbook of Epistemic Logic. College Publications, 2015.
  52. Making Higher-order Superposition Work. In A. Platzer and G. Sutcliffe, editors, Proceedings of the 28th International Conference on Automated Deduction, number 12699 in Lecture Notes in Computer Science, pages 415--432. Springer-Verlag, 2021.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com