Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AI Security for Geoscience and Remote Sensing: Challenges and Future Trends (2212.09360v2)

Published 19 Dec 2022 in cs.CV

Abstract: Recent advances in AI have significantly intensified research in the geoscience and remote sensing (RS) field. AI algorithms, especially deep learning-based ones, have been developed and applied widely to RS data analysis. The successful application of AI covers almost all aspects of Earth observation (EO) missions, from low-level vision tasks like super-resolution, denoising and inpainting, to high-level vision tasks like scene classification, object detection and semantic segmentation. While AI techniques enable researchers to observe and understand the Earth more accurately, the vulnerability and uncertainty of AI models deserve further attention, considering that many geoscience and RS tasks are highly safety-critical. This paper reviews the current development of AI security in the geoscience and RS field, covering the following five important aspects: adversarial attack, backdoor attack, federated learning, uncertainty and explainability. Moreover, the potential opportunities and trends are discussed to provide insights for future research. To the best of the authors' knowledge, this paper is the first attempt to provide a systematic review of AI security-related research in the geoscience and RS community. Available code and datasets are also listed in the paper to move this vibrant field of research forward.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (140)
  1. M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais et al., “Deep learning and process understanding for data-driven Earth system science,” Nature, vol. 566, no. 7743, pp. 195–204, 2019.
  2. P. Ghamisi, E. Maggiori, S. Li, R. Souza, Y. Tarablaka, G. Moser, A. De Giorgi, L. Fang, Y. Chen, M. Chi et al., “New frontiers in spectral-spatial hyperspectral image classification: The latest advances based on mathematical morphology, markov random fields, segmentation, sparse representation, and deep learning,” IEEE Geosci. Remote Sens. Mag., vol. 6, no. 3, pp. 10–43, 2018.
  3. L. Zhang, L. Zhang, and B. Du, “Deep learning for remote sensing data: A technical tutorial on the state of the art,” IEEE Geosci. Remote Sens. Mag., vol. 4, no. 2, pp. 22–40, 2016.
  4. X. X. Zhu, D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu, and F. Fraundorfer, “Deep learning in remote sensing: A comprehensive review and list of resources,” IEEE Geosci. Remote Sens. Mag., vol. 5, no. 4, pp. 8–36, 2017.
  5. J. Ma, W. Yu, C. Chen, P. Liang, X. Guo, and J. Jiang, “Pan-GAN: An unsupervised pan-sharpening method for remote sensing image fusion,” Inf. Fusion, vol. 62, pp. 110–120, 2020.
  6. W. He, Q. Yao, C. Li, N. Yokoya, Q. Zhao, H. Zhang, and L. Zhang, “Non-local meets global: An iterative paradigm for hyperspectral image restoration,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 4, pp. 2089–2107, 2022.
  7. P. Ebel, Y. Xu, M. Schmitt, and X. X. Zhu, “SEN12MS-CR-TS: A remote-sensing data set for multimodal multitemporal cloud removal,” IEEE Trans. Geos. Remote Sens., vol. 60, pp. 1–14, 2022.
  8. Y. Zhong, W. Li, X. Wang, S. Jin, and L. Zhang, “Satellite-ground integrated destriping network: A new perspective for EO-1 Hyperion and Chinese hyperspectral satellite datasets,” Remote Sens. Environ., vol. 237, p. 111416, 2020.
  9. G. Cheng, J. Han, and X. Lu, “Remote sensing image scene classification: Benchmark and state of the art,” Proc. IEEE, vol. 105, no. 10, pp. 1865–1883, 2017.
  10. J. Ding, N. Xue, G.-S. Xia, X. Bai, W. Yang, M. Yang, S. Belongie, J. Luo, M. Datcu, M. Pelillo et al., “Object detection in aerial images: A large-scale benchmark and challenges,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 11, pp. 7778–7796, 2022.
  11. Y. Xu, B. Du, L. Zhang, D. Cerra, M. Pato, E. Carmona, S. Prasad, N. Yokoya, R. Hänsch, and B. Le Saux, “Advanced multi-sensor optical remote sensing for urban land use and land cover classification: Outcome of the 2018 IEEE GRSS Data Fusion Contest,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 6, pp. 1709–1724, 2019.
  12. H. Chen, C. Wu, B. Du, L. Zhang, and L. Wang, “Change detection in multisource VHR images via deep siamese convolutional multiple-layers recurrent neural network,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 4, pp. 2848–2864, 2019.
  13. J. Shao, B. Du, C. Wu, M. Gong, and T. Liu, “HRSiam: High-resolution siamese network, towards space-borne satellite video tracking,” IEEE Trans. Image Process., vol. 30, pp. 3056–3068, 2021.
  14. X. Lu, B. Wang, X. Zheng, and X. Li, “Exploring models and data for remote sensing image caption generation,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 4, pp. 2183–2195, 2017.
  15. Y. Xu, W. Yu, P. Ghamisi, M. Kopp, and S. Hochreiter, “Txt2Img-MHN: Remote sensing image generation from text using modern Hopfield networks,” arXiv preprint arXiv:2208.04441, 2022.
  16. S. Lobry, D. Marcos, J. Murray, and D. Tuia, “RSVQA: Visual question answering for remote sensing data,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 12, pp. 8555–8566, 2020.
  17. D. Rashkovetsky, F. Mauracher, M. Langer, and M. Schmitt, “Wildfire detection from multisensor satellite imagery using deep semantic segmentation,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 7001–7016, 2021.
  18. O. Ghorbanzadeh, Y. Xu, H. Zhao, J. Wang, Y. Zhong, D. Zhao, Q. Zang, S. Wang, F. Zhang, Y. Shi et al., “The outcome of the 2022 Landslide4Sense Competition: Advanced landslide detection from multi-source satellite imagery,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., pp. 1–16, 2022.
  19. S. Dewitte, J. P. Cornelis, R. Müller, and A. Munteanu, “Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction,” Remote Sens., vol. 13, no. 16, p. 3209, 2021.
  20. X. Feng, T.-M. Fu, H. Cao, H. Tian, Q. Fan, and X. Chen, “Neural network predictions of pollutant emissions from open burning of crop residues: Application to air quality forecasts in southern China,” Atmos. Environ., vol. 204, pp. 22–31, 2019.
  21. N. Jean, M. Burke, M. Xie, W. M. Davis, D. B. Lobell, and S. Ermon, “Combining satellite imagery and machine learning to predict poverty,” Science, vol. 353, no. 6301, pp. 790–794, 2016.
  22. G. W. Gella, L. Wendt, S. Lang, D. Tiede, B. Hofer, Y. Gao, and A. Braun, “Mapping of dwellings in IDP/refugee settlements from very high-resolution satellite imagery using a mask region-based convolutional neural network,” Remote Sens., vol. 14, no. 3, p. 689, 2022.
  23. L. Zhang and L. Zhang, “Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities,” IEEE Geosci. Remote Sens. Mag., vol. 10, no. 2, pp. 270–294, 2022.
  24. Y. Ge, X. Zhang, P. M. Atkinson, A. Stein, and L. Li, “Geoscience-aware deep learning: A new paradigm for remote sensing,” Science of Remote Sensing, vol. 5, p. 100047, 2022.
  25. W. Czaja, N. Fendley, M. Pekala, C. Ratto, and I.-J. Wang, “Adversarial examples in remote sensing,” in Proc. SIGSPATIAL Int. Conf. Adv. Geogr. Inf. Syst., 2018, pp. 408–411.
  26. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Commun. ACM., vol. 60, no. 6, pp. 84–90, 2017.
  27. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” in Proc. Int. Conf. Learn. Represent., 2015.
  28. A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physical world,” in Proc. Int. Conf. Learn. Represent., 2017.
  29. A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant to adversarial attacks,” in Proc. Int. Conf. Learn. Represent., 2018.
  30. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fergus, “Intriguing properties of neural networks,” in Proc. Int. Conf. Learn. Represent., 2014.
  31. L. Chen, G. Zhu, Q. Li, and H. Li, “Adversarial example in remote sensing image recognition,” arXiv preprint arXiv:1910.13222, 2020.
  32. Y. Xu, B. Du, and L. Zhang, “Assessing the threat of adversarial examples on deep neural networks for remote sensing scene classification: Attacks and defenses,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 2, pp. 1604–1617, 2021.
  33. Y. Xu and P. Ghamisi, “Universal adversarial examples in remote sensing: Methodology and benchmark,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–15, 2022.
  34. Y. Zhou, M. Kantarcioglu, B. Thuraisingham, and B. Xi, “Adversarial support vector machine learning,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2012, pp. 1059–1067.
  35. T. Bai, H. Wang, and B. Wen, “Targeted universal adversarial examples for remote sensing,” Remote Sens., vol. 14, no. 22, p. 5833, 2022.
  36. Y. Xu, B. Du, and L. Zhang, “Self-attention context network: Addressing the threat of adversarial attacks for hyperspectral image classification,” IEEE Trans. Image Process., vol. 30, pp. 8671–8685, 2021.
  37. M. E. Paoletti, J. M. Haut, R. Fernandez-Beltran, J. Plaza, A. J. Plaza, and F. Pla, “Deep pyramidal residual networks for spectral–spatial hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 2, pp. 740–754, 2018.
  38. C. Shi, Y. Dang, L. Fang, Z. Lv, and M. Zhao, “Hyperspectral image classification with adversarial attack,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022.
  39. L. Chen, Z. Xu, Q. Li, J. Peng, S. Wang, and H. Li, “An empirical study of adversarial examples on remote sensing image scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 9, pp. 7419–7433, 2021.
  40. H. Li, H. Huang, L. Chen, J. Peng, H. Huang, Z. Cui, X. Mei, and G. Wu, “Adversarial examples for CNN-based SAR image classification: An experience study,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 1333–1347, 2021.
  41. T. Bai, J. Luo, J. Zhao, B. Wen, and Q. Wang, “Recent advances in adversarial training for adversarial robustness,” in Proc. Int. Joint Conf. Artif. Intell., 2021, pp. 4312–4321.
  42. A. Chan-Hon-Tong, G. Lenczner, and A. Plyer, “Demotivate adversarial defense in remote sensing,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2021, pp. 3448–3451.
  43. B. Peng, B. Peng, J. Zhou, J. Xie, and L. Liu, “Scattering model guided adversarial examples for SAR target recognition: Attack and defense,” IEEE Trans. Geosci. Remote Sens., 2022.
  44. Y. Xu, H. Sun, J. Chen, L. Lei, G. Kuang, and K. Ji, “Robust remote sensing scene classification by adversarial self-supervised learning,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2021, pp. 4936–4939.
  45. G. Cheng, X. Sun, K. Li, L. Guo, and J. Han, “Perturbation-seeking generative adversarial networks: A defense framework for remote sensing image scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–11, 2022.
  46. Y. Xu, W. Yu, and P. Ghamisi, “Task-guided denoising network for adversarial defense of remote sensing scene classification,” in Proc. Int. Joint Conf. Artif. Intell. Workshop, 2022.
  47. L. Chen, J. Xiao, P. Zou, and H. Li, “Lie to me: A soft threshold defense method for adversarial examples of remote sensing images,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022.
  48. Z. Zhang, X. Gao, S. Liu, B. Peng, and Y. Wang, “Energy-based adversarial example detection for SAR images,” Remote Sens., vol. 14, no. 20, p. 5168, 2022.
  49. Y. Zhang, Y. Zhang, J. Qi, K. Bin, H. Wen, X. Tong, and P. Zhong, “Adversarial patch attack on multi-scale object detection for UAV remote sensing images,” Remote Sens., vol. 14, no. 21, p. 5298, 2022.
  50. X. Sun, G. Cheng, L. Pei, H. Li, and J. Han, “Threatening patch attacks on object detection in optical remote sensing images,” arXiv preprint arXiv:2302.06060, 2023.
  51. J.-C. Burnel, K. Fatras, R. Flamary, and N. Courty, “Generating natural adversarial remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–14, 2021.
  52. Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting adversarial attacks with momentum,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 9185–9193.
  53. C. Xie, Z. Zhang, Y. Zhou, S. Bai, J. Wang, Z. Ren, and A. L. Yuille, “Improving transferability of adversarial examples with input diversity,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 2730–2739.
  54. X. Sun, G. Cheng, L. Pei, and J. Han, “Query-efficient decision-based attack via sampling distribution reshaping,” Pattern Recognition, vol. 129, p. 108728, 2022.
  55. X. Sun, G. Cheng, H. Li, L. Pei, and J. Han, “Exploring effective data for surrogate training towards black-box attack,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2022, pp. 15 355–15 364.
  56. B. Deng, D. Zhang, F. Dong, J. Zhang, M. Shafiq, and Z. Gu, “Rust-style patch: A physical and naturalistic camouflage attacks on object detector for remote sensing images,” Remote Sens., vol. 15, no. 4, p. 885, 2023.
  57. H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli, “Is feature selection secure against training data poisoning?” in Proc. Int. Conf. Mach. Learn., 2015, pp. 1689–1698.
  58. T. Gu, B. Dolan-Gavitt, and S. Garg, “BadNets: Identifying vulnerabilities in the machine learning model supply chain,” arXiv preprint arXiv:1708.06733, 2017.
  59. Y. Liu, Y. Xie, and A. Srivastava, “Neural trojans,” in Proc. IEEE Int. Conf. Comput. Design, 2017, pp. 45–48.
  60. Y. Li, Y. Jiang, Z. Li, and S.-T. Xia, “Backdoor learning: A survey,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–18, 2022.
  61. Y. Yang and S. Newsam, “Bag-of-visual-words and spatial extensions for land-use classification,” in Proc. SIGSPATIAL Int. Conf. Adv. Geogr. Inf. Syst., 2010, pp. 270–279.
  62. E. Brewer, J. Lin, and D. Runfola, “Susceptibility & defense of satellite image-trained convolutional networks to backdoor attacks,” Inf. Sci., vol. 603, pp. 244–261, 2022.
  63. X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor attacks on deep learning systems using data poisoning,” arXiv preprint arXiv:1712.05526, 2017.
  64. A. Nguyen and A. Tran, “WaNet–Imperceptible warping-based backdoor attack,” arXiv preprint arXiv:2102.10369, 2021.
  65. A. Turner, D. Tsipras, and A. Madry, “Label-consistent backdoor attacks,” arXiv preprint arXiv:1912.02771, 2019.
  66. A. Saha, A. Subramanya, and H. Pirsiavash, “Hidden trigger backdoor attacks,” in Proc. AAAI Conf. Artif. Intell., vol. 34, no. 7, 2020, pp. 11 957–11 965.
  67. Y. Li, Y. Li, B. Wu, L. Li, R. He, and S. Lyu, “Invisible backdoor attack with sample-specific triggers,” in Proc. IEEE Int. Conf. Comput. Vis., 2021, pp. 16 463–16 472.
  68. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  69. E. Brewer, J. Lin, P. Kemper, J. Hennin, and D. Runfola, “Predicting road quality using high resolution satellite imagery: A transfer learning approach,” Plos One, vol. 16, no. 7, p. e0253370, 2021.
  70. N. Dräger, Y. Xu, and P. Ghamisi, “Backdoor attacks for remote sensing data with wavelet transform,” arXiv preprint arXiv:2211.08044, 2022.
  71. K.-Y. Tsao, T. Girdler, and V. G. Vassilakis, “A survey of cyber security threats and solutions for UAV communications and flying ad-hoc networks,” Ad Hoc Netw., p. 102894, 2022.
  72. A. Rugo, C. A. Ardagna, and N. E. Ioini, “A security review in the UAVNet era: Threats, countermeasures, and gap analysis,” ACM Comput. Surv., vol. 55, no. 1, pp. 1–35, 2022.
  73. S. Islam, S. Badsha, I. Khalil, M. Atiquzzaman, and C. Konstantinou, “A triggerless backdoor attack and defense mechanism for intelligent task offloading in multi-UAV systems,” IEEE Internet Things J., 2022.
  74. C. Beretas et al., “Smart cities and smart devices: The back door to privacy and data breaches,” Biomed. J. Sci. Technol. Res., vol. 28, no. 1, pp. 21 221–21 223, 2020.
  75. S. Hashemi and M. Zarei, “Internet of things backdoors: Resource management issues, security challenges, and detection methods,” Trans. Emerg. Telecommun. Technol., vol. 32, no. 2, p. e4142, 2021.
  76. B. G. Doan, E. Abbasnejad, and D. C. Ranasinghe, “Februus: Input purification defense against trojan attacks on deep neural network systems,” in Proc. Annu. Comput. Secur. Appl. Conf., 2020, pp. 897–912.
  77. S. Ding, Y. Tian, F. Xu, Q. Li, and S. Zhong, “Poisoning attack on deep generative models in autonomous driving,” in Proc. EAI Secur. Commun., 2019, pp. 299–318.
  78. P. Kumar, G. P. Gupta, and R. Tripathi, “TP2SF: A trustworthy privacy-preserving secured framework for sustainable smart cities by leveraging blockchain and machine learning,” J. Syst. Archit., vol. 115, p. 101954, 2021.
  79. Q. Liu, L. Chen, H. Jiang, J. Wu, T. Wang, T. Peng, and G. Wang, “A collaborative deep learning microservice for backdoor defenses in industrial IoT networks,” Ad Hoc Netw., vol. 124, p. 102727, 2022.
  80. Y. Wang, E. Sarkar, W. Li, M. Maniatakos, and S. E. Jabari, “Stop-and-go: Exploring backdoor attacks on deep reinforcement learning-based traffic congestion control systems,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 4772–4787, 2021.
  81. P. Tam, S. Math, C. Nam, and S. Kim, “Adaptive resource optimized edge federated learning in real-time image sensing classifications,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 10 929–10 940, 2021.
  82. D. Li, M. Wang, Z. Dong, X. Shen, and L. Shi, “Earth observation brain (EOB): An intelligent Earth observation system,” Geo-Spat. Inf. Sci., vol. 20, no. 2, pp. 134–140, 2017.
  83. Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 2, pp. 1–19, 2019.
  84. C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on federated learning,” Knowl.-Based Syst., vol. 216, p. 106775, 2021.
  85. Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, “A survey on federated learning systems: Vision, hype and reality for data privacy and protection,” IEEE Trans. Knowl. Data Eng., 2021.
  86. T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and future directions,” IEEE Signal Process. Mag., vol. 37, no. 3, pp. 50–60, 2020.
  87. P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al., “Advances and open problems in federated learning,” Found. Trends Mach. Learn., vol. 14, no. 1–2, pp. 1–210, 2021.
  88. J. Mills, J. Hu, and G. Min, “Multi-task federated learning for personalised deep neural networks in edge computing,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 3, pp. 630–641, 2021.
  89. L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in federated learning,” Comput. Ind. Eng., vol. 149, p. 106854, 2020.
  90. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Proc. Int. Conf. Artif. Intell. Statist.   PMLR, 2017, pp. 1273–1282.
  91. B. Hu, Y. Gao, L. Liu, and H. Ma, “Federated region-learning: An edge computing based framework for urban environment sensing,” in Proc. IEEE Glob. Commun. Conf.   IEEE, 2018, pp. 1–7.
  92. Y. Gao, L. Liu, B. Hu, T. Lei, and H. Ma, “Federated region-learning for environment sensing in edge computing system,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 4, pp. 2192–2204, 2020.
  93. C. Xu and Y. Mao, “An improved traffic congestion monitoring system based on federated learning,” Information, vol. 11, no. 7, p. 365, 2020.
  94. M. Alazab, S. P. RM, M. Parimala, P. K. R. Maddikunta, T. R. Gadekallu, and Q.-V. Pham, “Federated learning for cybersecurity: Concepts, challenges, and future directions,” IEEE Trans. Industr. Inform., vol. 18, no. 5, pp. 3501–3509, 2021.
  95. Z. M. Fadlullah and N. Kato, “On smart IoT remote sensing over integrated terrestrial-aerial-space networks: An asynchronous federated learning approach,” IEEE Network, vol. 35, no. 5, pp. 129–135, 2021.
  96. P. Chhikara, R. Tekchandani, N. Kumar, and S. Tanwar, “Federated learning-based aerial image segmentation for collision-free movement and landing,” in Proc. ACM MobiCom Workshop Drone Assist. Wireless Commun. 5G Beyond, 2021, pp. 13–18.
  97. W. Lee, “Federated reinforcement learning-based UAV swarm system for aerial remote sensing,” Wirel. Commun. Mob. Comput., vol. 2022, 2022.
  98. K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, D. Papadopoulos, and Q. Yang, “Secureboost: A lossless federated learning framework,” IEEE Intell. Syst., vol. 36, no. 6, pp. 87–98, 2021.
  99. A. Huang, Y. Liu, T. Chen, Y. Zhou, Q. Sun, H. Chai, and Q. Yang, “StarFL: Hybrid federated learning architecture for smart urban computing,” ACM Trans. Intell. Syst. Technol., vol. 12, no. 4, pp. 1–23, 2021.
  100. J. C. Jiang, B. Kantarci, S. Oktug, and T. Soyata, “Federated learning in smart city sensing: Challenges and opportunities,” Sensors, vol. 20, no. 21, p. 6230, 2020.
  101. Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, “FedHealth: A federated transfer learning framework for wearable healthcare,” IEEE Intell. Syst., vol. 35, no. 4, pp. 83–93, 2020.
  102. P. Atkinson and G. Foody, “Uncertainty in remote sensing and GIS: Fundamentals,” Uncertain. Rem. Sens. GIS, pp. 1–18, 2002.
  103. M. Firestone, P. Fenner-Crisp, T. Barry, D. Bennett, S. Chang, M. Callahan, A. Burke, J. Michaud, M. Olsen, P. Cirone et al., “Guiding principles for monte carlo analysis,” US Environmental Protection Agency: Washington, DC, USA, 1997.
  104. G. Wang, G. Z. Gertner, S. Fang, and A. B. Anderson, “A methodology for spatial uncertainty analysis of remote sensing and GIS products,” Photogramm. Eng. Remote Sens., vol. 71, no. 12, pp. 1423–1432, 2005.
  105. A. Povey and R. Grainger, “Known and unknown unknowns: Uncertainty estimation in satellite remote sensing,” Atmos. Meas. Tech., vol. 8, no. 11, pp. 4699–4718, 2015.
  106. A. M. Lechner, W. T. Langford, S. A. Bekessy, and S. D. Jones, “Are landscape ecologists addressing uncertainty in their remote sensing data?” Landsc. Ecol., vol. 27, no. 9, pp. 1249–1261, 2012.
  107. D. Tuia, C. Persello, and L. Bruzzone, “Domain adaptation for the classification of remote sensing data: An overview of recent advances,” IEEE Geosci. Remote Sens. Mag., vol. 4, no. 2, pp. 41–57, 2016.
  108. B. Benjdira, Y. Bazi, A. Koubaa, and K. Ouni, “Unsupervised domain adaptation using generative adversarial networks for semantic segmentation of aerial images,” Remote Sens., vol. 11, no. 11, p. 1369, 2019.
  109. H. Jabbar and R. Z. Khan, “Methods to avoid over-fitting and under-fitting in supervised machine learning (comparative study),” Comput. Sci. Commun. Instrum. Devices, pp. 163–172, 2015.
  110. Z. Yin, M. Amaru, Y. Wang, L. Li, and J. Caers, “Quantifying uncertainty in downscaling of seismic data to high-resolution 3-D lithological models,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–12, 2022.
  111. J. Gawlikowski, S. Saha, A. Kruspe, and X. X. Zhu, “An advanced dirichlet prior network for out-of-distribution detection in remote sensing,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–19, 2022.
  112. ——, “Towards out-of-distribution detection for remote sensing,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2021, pp. 8676–8679.
  113. W. Feng, H. Sui, J. Tu, W. Huang, C. Xu, and K. Sun, “A novel change detection approach for multi-temporal high-resolution remote sensing images based on rotation forest and coarse-to-fine uncertainty analyses,” Remote Sen., vol. 10, no. 7, p. 1015, 2018.
  114. K. Tan, Y. Zhang, X. Wang, and Y. Chen, “Object-based change detection using multiple classifiers and multi-scale uncertainty analysis,” Remote Sens., vol. 11, no. 3, p. 359, 2019.
  115. T. Schroeder, M. Schaale, J. Lovell, and D. Blondeau-Patissier, “An ensemble neural network atmospheric correction for Sentinel-3 OLCI over coastal waters providing inherent model uncertainty estimation and sensor noise propagation,” Remote Sens. Environ., vol. 270, p. 112848, 2022.
  116. C. Dechesne, P. Lassalle, and S. Lefèvre, “Bayesian U-Net: Estimating uncertainty in semantic segmentation of Earth observation images,” Remote Sens., vol. 13, no. 19, p. 3836, 2021.
  117. M. Werther, D. Odermatt, S. G. Simis, D. Gurlin, M. K. Lehmann, T. Kutser, R. Gupana, A. Varley, P. D. Hunter, A. N. Tyler et al., “A bayesian approach for remote sensing of chlorophyll-a and associated retrieval uncertainty in oligotrophic and mesotrophic lakes,” Remote Sens. Environ., vol. 283, p. 113295, 2022.
  118. B. W. Allred, B. T. Bestelmeyer, C. S. Boyd, C. Brown, K. W. Davies, M. C. Duniway, L. M. Ellsworth, T. A. Erickson, S. D. Fuhlendorf, T. V. Griffiths et al., “Improving Landsat predictions of rangeland fractional cover with multitask learning and uncertainty,” Methods Ecol. Evol., vol. 12, no. 5, pp. 841–849, 2021.
  119. Y. Ma, Z. Zhang, Y. Kang, and M. Özdoğan, “Corn yield prediction and uncertainty analysis based on remotely sensed variables using a bayesian neural network approach,” Remote Sens. Environ., vol. 259, p. 112408, 2021.
  120. D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl, “On empirical comparisons of optimizers for deep learning,” arXiv preprint arXiv:1910.05446, 2019.
  121. H. Robbins and S. Monro, “A stochastic approximation method,” Ann. Math. Stat., pp. 400–407, 1951.
  122. Q. Wang, Y. Ma, K. Zhao, and Y. Tian, “A comprehensive survey of loss functions in machine learning,” Ann. Data Sci., vol. 9, no. 2, pp. 187–212, 2022.
  123. F. He, T. Liu, and D. Tao, “Control batch size and learning rate to generalize well: Theoretical and empirical evidence,” Proc. Neural Inf. Process. Syst., vol. 32, 2019.
  124. C. Persello, “Interactive domain adaptation for the classification of remote sensing images using active learning,” IEEE Geosci. Remote Sens. Lett., vol. 10, no. 4, pp. 736–740, 2012.
  125. H. Feng, Z. Miao, and Q. Hu, “Study on the uncertainty of machine learning model for earthquake-induced landslide susceptibility assessment,” Remote Sens., vol. 14, no. 13, p. 2968, 2022.
  126. A. Malinin and M. Gales, “Predictive uncertainty estimation via prior networks,” in Proc. Neural Inf. Process. Syst., 2018, pp. 7047–7058.
  127. M. Sensoy, L. Kaplan, and M. Kandemir, “Evidential deep learning to quantify classification uncertainty,” in Proc. Neural Inf. Process. Syst., 2018, pp. 1–11.
  128. M. Możejko, M. Susik, and R. Karczewski, “Inhibited softmax for uncertainty estimation in neural networks,” arXiv preprint arXiv:1810.01861, 2018.
  129. J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe, R. Triebel, P. Jung, R. Roscher et al., “A survey of uncertainty in deep neural networks,” arXiv preprint arXiv:2107.03342, 2021.
  130. R. Seoh, “Qualitative analysis of monte carlo dropout,” arXiv preprint arXiv:2007.01720, 2020.
  131. N. Hochgeschwender, P. Plöger, F. Kirchner, M. Valdenegro-Toro et al., “Evaluating uncertainty estimation methods on 3D semantic segmentation of point clouds,” arXiv preprint arXiv:2007.01787, 2020.
  132. P. P. Angelov, E. A. Soares, R. Jiang, N. I. Arnold, and P. M. Atkinson, “Explainable artificial intelligence: An analytical review,” Wiley Interdiscipl. Rev. Data Mining Knowl. Discovery, vol. 11, no. 5, p. e1424, 2021.
  133. A. Adadi and M. Berrada, “Peeking inside the black-box: A survey on explainable artificial intelligence (XAI),” IEEE Access, vol. 6, pp. 52 138–52 160, 2018.
  134. I. Kakogeorgiou and K. Karantzalos, “Evaluating explainable artificial intelligence methods for multi-label deep learning classification tasks in remote sensing,” Int. J. Appl. Earth Obs. Geoinf., vol. 103, p. 102520, 2021.
  135. L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal, “Explaining explanations: An overview of interpretability of machine learning,” in Proc. IEEE Int. Conf. Data Sci. Adv. Anal., 2018, pp. 80–89.
  136. K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Visualising image classification models and saliency maps,” in Proc. Int. Conf. Learn. Represent. Workshops, 2013.
  137. A. Das and P. Rad, “Opportunities and challenges in explainable artificial intelligence (XAI): A survey,” arXiv preprint arXiv:2006.11371, 2020.
  138. M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust you? Explaining the predictions of any classifier,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2016, pp. 1135–1144.
  139. B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discriminative localization,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 2921–2929.
  140. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Visual explanations from deep networks via gradient-based localization,” in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 618–626.
Citations (39)

Summary

We haven't generated a summary for this paper yet.