Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge Transfer and Reuse: A Case Study of AI-enabled Resource Management in RAN Slicing (2212.09172v1)

Published 18 Dec 2022 in cs.NI, cs.SY, and eess.SY

Abstract: An efficient resource management scheme is critical to enable network slicing in 5G networks and in envisioned 6G networks, and AI techniques offer promising solutions. Considering the rapidly emerging new machine learning techniques, such as graph learning, federated learning, and transfer learning, a timely survey is needed to provide an overview of resource management and network slicing techniques of AI-enabled wireless networks. This article provides such a survey along with an application of knowledge transfer in radio access network (RAN) slicing. In particular, we firs provide some background on resource management and network slicing, and review relevant state-of-the-art AI and ML techniques and their applications. Then, we introduce our AI-enabled knowledge transfer and reuse-based resource management (AKRM) scheme, where we apply transfer learning to improve system performance. Compared with most existing works, which focus on the training of standalone agents from scratch, the main difference of AKRM lies in its knowledge transfer and reuse capability between different tasks. Our paper aims to be a roadmap for researchers to use knowledge transfer schemes in AI-enabled wireless networks, and we provide a case study over the resource allocation problem in RAN slicing.

Citations (12)

Summary

We haven't generated a summary for this paper yet.