Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the design of energy-decaying momentum-conserving integrator for nonlinear dynamics using energy splitting and perturbation techniques (2212.09099v1)

Published 18 Dec 2022 in math.NA, cs.NA, nlin.CD, and physics.comp-ph

Abstract: This work proposes a suite of numerical techniques to facilitate the design of structure-preserving integrators for nonlinear dynamics. The celebrated LaBudde-Greenspan integrator and various energy-momentum schemes adopt a difference quotient formula in their algorithmic force definitions, which suffers from numerical instability as the denominator gets close to zero. There is a need to develop structure-preserving integrators without invoking the quotient formula. In this work, the potential energy of a Hamiltonian system is split into two parts, and specially developed quadrature rules are applied separately to them. The resulting integrators can be regarded as classical ones perturbed with first- or second-order terms, and the energy split guarantees the dissipative nature in the numerical residual. In the meantime, the conservation of invariants is respected in the design. A complete analysis of the proposed integrators is given, with representative numerical examples provided to demonstrate their performance. They can be used either independently as energy-decaying and momentum-conserving schemes for nonlinear problems or as an alternate option with a conserving integrator, such as the LaBudde-Greenspan integrator, when the numerical instability in the difference quotient is detected.

Citations (1)

Summary

We haven't generated a summary for this paper yet.