Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inference with approximate local false discovery rates (2212.08856v1)

Published 17 Dec 2022 in stat.ME

Abstract: Efron's two-group model is widely used in large scale multiple testing. This model assumes that test statistics are mutually independent, however in realistic settings they are typically dependent, and taking the dependence into account can boost power. The general two-group model takes the dependence between the test statistics into account. Optimal policies in the general two-group model require calculation, for each hypothesis, of the probability that it is a true null given all test statistics, denoted local false discovery rate (locFDR). Unfortunately, calculating locFDRs under realistic dependence structures can be computationally prohibitive. We propose calculating approximate locFDRs based on a properly defined N-neighborhood for each hypothesis. We prove that by thresholding the approximate locFDRs with a fixed threshold, the marginal false discovery rate is controlled for any dependence structure. Furthermore, we prove that this is the optimal procedure in a restricted class of decision rules, where decision for each hypothesis is only guided by its N-neighborhood. We show through extensive simulations that our proposed method achieves substantial power gains compared to alternative practical approaches, while maintaining conceptual simplicity and computational feasibility. We demonstrate the utility of our method on a genome wide association study of height.

Summary

We haven't generated a summary for this paper yet.