Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cognitive Level-$k$ Meta-Learning for Safe and Pedestrian-Aware Autonomous Driving (2212.08800v3)

Published 17 Dec 2022 in cs.RO, cs.AI, cs.HC, cs.LG, and math.OC

Abstract: The potential market for modern self-driving cars is enormous, as they are developing remarkably rapidly. At the same time, however, accidents of pedestrian fatalities caused by autonomous driving have been recorded in the case of street crossing. To ensure traffic safety in self-driving environments and respond to vehicle-human interaction challenges such as jaywalking, we propose Level-$k$ Meta Reinforcement Learning (LK-MRL) algorithm. It takes into account the cognitive hierarchy of pedestrian responses and enables self-driving vehicles to adapt to various human behaviors. %which takes into account pedestrian responses while learning the optimal strategies. As a self-driving vehicle algorithm, the LK-MRL combines level-$k$ thinking into MAML to prepare for heterogeneous pedestrians and improve intersection safety based on the combination of meta-reinforcement learning and human cognitive hierarchy framework. We evaluate the algorithm in two cognitive confrontation hierarchy scenarios in an urban traffic simulator and illustrate its role in ensuring road safety by demonstrating its capability of conjectural and higher-level reasoning.

Summary

We haven't generated a summary for this paper yet.