Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on Password Guessing (2212.08796v2)

Published 17 Dec 2022 in cs.CR

Abstract: Text password has served as the most popular method for user authentication so far, and is not likely to be totally replaced in foreseeable future. Password authentication offers several desirable properties (e.g., low-cost, highly available, easy-to-implement, reusable). However, it suffers from a critical security issue mainly caused by the inability to memorize complicated strings of humans. Users tend to choose easy-to-remember passwords which are not uniformly distributed in the key space. Thus, user-selected passwords are susceptible to guessing attacks. In order to encourage and support users to use strong passwords, it is necessary to simulate automated password guessing methods to determine the passwords' strength and identify weak passwords. A large number of password guessing models have been proposed in the literature. However, little attention was paid to the task of providing a systematic survey which is necessary to review the state-of-the-art approaches, identify gaps, and avoid duplicate studies. Motivated by that, we conduct a comprehensive survey on all password guessing studies presented in the literature from 1979 to 2022. We propose a generic methodology map to present an overview of existing methods. Then, we explain each representative approach in detail. The experimental procedures and available datasets used to evaluate password guessing models are summarized, and the reported performances of representative studies are compared. Finally, the current limitations and the open problems as future research directions are discussed. We believe that this survey is helpful to both experts and newcomers who are interested in password security

Citations (1)

Summary

We haven't generated a summary for this paper yet.