Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributionally robust chance-constrained Markov decision processes (2212.08126v1)

Published 15 Dec 2022 in math.OC

Abstract: Markov decision process (MDP) is a decision making framework where a decision maker is interested in maximizing the expected discounted value of a stream of rewards received at future stages at various states which are visited according to a controlled Markov chain. Many algorithms including linear programming methods are available in the literature to compute an optimal policy when the rewards and transition probabilities are deterministic. In this paper, we consider an MDP problem where the transition probabilities are known and the reward vector is a random vector whose distribution is partially known. We formulate the MDP problem using distributionally robust chance-constrained optimization framework under various types of moments based uncertainty sets, and statistical-distance based uncertainty sets defined using phi-divergence and Wasserstein distance metric. For each type of uncertainty set, we consider the case where a random reward vector has either a full support or a nonnegative support. For the case of full support, we show that the distributionally robust chance-constrained Markov decision process is equivalent to a second-order cone programming problem for the moments and phi-divergence distance based uncertainty sets, and it is equivalent to a mixed-integer second-order cone programming problem for an Wasserstein distance based uncertainty set. For the case of nonnegative support, it is equivalent to a copositive optimization problem and a biconvex optimization problem for the moments based uncertainty sets and Wasserstein distance based uncertainty set, respectively. As an application, we study a machine replacement problem and illustrate numerical experiments on randomly generated instances.

Citations (3)

Summary

We haven't generated a summary for this paper yet.