Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

The Exotic $K(2)$-Local Picard Group at the Prime $2$ (2212.07858v2)

Published 15 Dec 2022 in math.AT

Abstract: We calculate the group $\kappa_2$ of exotic elements in the $K(2)$-local Picard group at the prime $2$ and find it is a group of order $29$ isomorphic to $(\mathbb{Z}/8)2 \times (\mathbb{Z}/2)3$. In order to do this we must define and exploit a variety of different ways of constructing elements in the Picard group, and this requires a significant exploration of the theory. The most innovative technique, which so far has worked best at the prime $2$, is the use of a $J$-homomorphism from the group of real representations of finite quotients of the Morava stabilizer group to the $K(n)$-local Picard group.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.