Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simulator-Based Self-Supervision for Learned 3D Tomography Reconstruction (2212.07431v2)

Published 14 Dec 2022 in eess.IV, cs.CV, cs.LG, and cs.NE

Abstract: We propose a deep learning method for 3D volumetric reconstruction in low-dose helical cone-beam computed tomography. Prior machine learning approaches require reference reconstructions computed by another algorithm for training. In contrast, we train our model in a fully self-supervised manner using only noisy 2D X-ray data. This is enabled by incorporating a fast differentiable CT simulator in the training loop. As we do not rely on reference reconstructions, the fidelity of our results is not limited by their potential shortcomings. We evaluate our method on real helical cone-beam projections and simulated phantoms. Our results show significantly higher visual fidelity and better PSNR over techniques that rely on existing reconstructions. When applied to full-dose data, our method produces high-quality results orders of magnitude faster than iterative techniques.

Citations (2)

Summary

We haven't generated a summary for this paper yet.