Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lorentz group equivariant autoencoders (2212.07347v2)

Published 14 Dec 2022 in hep-ex and cs.LG

Abstract: There has been significant work recently in developing ML models in high energy physics (HEP) for tasks such as classification, simulation, and anomaly detection. Often these models are adapted from those designed for datasets in computer vision or natural language processing, which lack inductive biases suited to HEP data, such as equivariance to its inherent symmetries. Such biases have been shown to make models more performant and interpretable, and reduce the amount of training data needed. To that end, we develop the Lorentz group autoencoder (LGAE), an autoencoder model equivariant with respect to the proper, orthochronous Lorentz group $\mathrm{SO}+(3,1)$, with a latent space living in the representations of the group. We present our architecture and several experimental results on jets at the LHC and find it outperforms graph and convolutional neural network baseline models on several compression, reconstruction, and anomaly detection metrics. We also demonstrate the advantage of such an equivariant model in analyzing the latent space of the autoencoder, which can improve the explainability of potential anomalies discovered by such ML models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. H. Qu and L. Gouskos, Phys. Rev. D 101, 056019 (2020), arXiv:1902.08570 .
  2. F. Bury and C. Delaere, JHEP 04, 020 (2021), arXiv:2008.10949 .
  3. D. Belayneh et al., Eur. Phys. J. C 80, 688 (2020), arXiv:1912.06794 .
  4. J. Duarte and J.-R. Vlimant, in Artificial Intelligence for Particle Physics (World Scientific Publishing, 2020) submitted to Int. J. Mod. Phys. A, arXiv:2012.01249 .
  5. S. Farrell et al., in 4th International Workshop Connecting The Dots 2018 (2018) arXiv:1810.06111 .
  6. T. Cheng, J.-F. Arguin, J. Leissner-Martin, J. Pilette,  and T. Golling, “Variational Autoencoders for Anomalous Jet Tagging,”  (2020), accepted by Phys. Rev. D, arXiv:2007.01850 .
  7. K. Dohi, “Variational Autoencoders for Jet Simulation,”  (2020), arXiv:2009.04842 .
  8. HEP ML Community, “A living review of machine learning for particle physics,”  (2021), arXiv:2102.02770 .
  9. C. Li, H. Qu, S. Qian, Q. Meng, S. Gong, J. Zhang, T.-Y. Liu,  and Q. Li, “Does Lorentz-symmetric design boost network performance in jet physics?”  (2022), arXiv:2208.07814 .
  10. J. H. Collins, in ICLR workshop Deep Generative Models for Highly Structured Data (2021) arXiv:2109.10919 .
  11. J. W. Monk, JHEP 12, 021 (2018), arXiv:1807.03685 .
  12. M. M. Bronstein, J. Bruna, T. Cohen,  and P. Veličković, “Geometric deep learning: Grids, groups, graphs, geodesics, and gauges,”  (2021), 2104.13478 .
  13. N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff,  and P. Riley, “Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds,”  (2018), arXiv:1802.08219 .
  14. M. Finzi, S. Stanton, P. Izmailov,  and A. G. Wilson, “Generalizing convolutional neural networks for equivariance to Lie groups on arbitrary continuous data,”  (2020).
  15. M. Geiger and T. Smidt, “e3nn: Euclidean neural networks,”  (2022).
  16. R. Kondor, Z. Lin,  and S. Trivedi, “Clebsch-Gordan Nets: a fully Fourier space spherical convolutional neural network,”  (2018).
  17. B. Anderson, T.-S. Hy,  and R. Kondor, “Cormorant: Covariant molecular neural networks,”  (2019).
  18. G. E. Hinton and R. R. Salakhutdinov, Science 313, 504 (2006).
  19. G. Di Guglielmo et al., IEEE Trans. Nucl. Sci. 68, 2179 (2021), arXiv:2105.01683 .
  20. G. Kasieczka et al., Rept. Prog. Phys. 84, 124201 (2021), arXiv:2101.08320 .
  21. E. Govorkova et al., Nat. Mach. Intell. 4, 154 (2022), arXiv:2108.03986 .
  22. D. Bank, N. Koenigstein,  and R. Giryes, “Autoencoders,”  (2020), 2003.05991 .
  23. M. Tschannen, O. Bachem,  and M. Lucic, “Recent advances in autoencoder-based representation learning,”  (2018), 1812.05069 .
  24. A. Paszke et al., in Advances in Neural Information Processing Systems, Vol. 32 (Curran Associates, Inc., 2019) p. 8024, 1912.01703 .
  25. R. Kansal, J. Duarte, H. Su, B. Orzari, T. Tomei, M. Pierini, M. Touranakou, J.-R. Vlimant,  and D. Gunopulos, “Jetnet,”  (2022a).
  26. R. Kansal, C. Pareja,  and J. Duarte, “jet-net/JetNet: v0.2.1.post2,”  (2022b).
  27. R. Jonker and A. Volgenant, Computing 38, 325 (1987).
  28. P. Virtanen et al., Nat. Methods 17, 261 (2020).
  29. G. Vilone and L. Longo, “Explainable artificial intelligence: a systematic review,”  (2020), arXiv:2006.00093 .
  30. H. W. Kuhn, Naval Research Logistics Quarterly 2, 83 (1955).
  31. D. P. Kingma and J. Ba, in 3rd International Conference on Learning Representations (ICLR), edited by Y. Bengio and Y. LeCun (2015) 1412.6980 .
  32. M. Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous systems,”  (2015), software available from tensorflow.org.
Citations (20)

Summary

We haven't generated a summary for this paper yet.