Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-Variance Forward Gradients using Direct Feedback Alignment and Momentum (2212.07282v4)

Published 14 Dec 2022 in cs.LG

Abstract: Supervised learning in deep neural networks is commonly performed using error backpropagation. However, the sequential propagation of errors during the backward pass limits its scalability and applicability to low-powered neuromorphic hardware. Therefore, there is growing interest in finding local alternatives to backpropagation. Recently proposed methods based on forward-mode automatic differentiation suffer from high variance in large deep neural networks, which affects convergence. In this paper, we propose the Forward Direct Feedback Alignment algorithm that combines Activity-Perturbed Forward Gradients with Direct Feedback Alignment and momentum. We provide both theoretical proofs and empirical evidence that our proposed method achieves lower variance than forward gradient techniques. In this way, our approach enables faster convergence and better performance when compared to other local alternatives to backpropagation and opens a new perspective for the development of online learning algorithms compatible with neuromorphic systems.

Citations (6)

Summary

We haven't generated a summary for this paper yet.