Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heuristically Guided Compilation for Multi-Agent Path Finding (2212.06940v1)

Published 13 Dec 2022 in cs.AI and cs.MA

Abstract: Multi-agent path finding (MAPF) is a task of finding non-conflicting paths connecting agents' specified initial and goal positions in a shared environment. We focus on compilation-based solvers in which the MAPF problem is expressed in a different well established formalism such as mixed-integer linear programming (MILP), Boolean satisfiability (SAT), or constraint programming (CP). As the target solvers for these formalisms act as black-boxes it is challenging to integrate MAPF specific heuristics in the MAPF compilation-based solvers. We show in this work how the build a MAPF encoding for the target SAT solver in which domain specific heuristic knowledge is reflected. The heuristic knowledge is transferred to the SAT solver by selecting candidate paths for each agent and by constructing the encoding only for these candidate paths instead of constructing the encoding for all possible paths for an agent. The conducted experiments show that heuristically guided compilation outperforms the vanilla variants of the SAT-based MAPF solver.

Summary

We haven't generated a summary for this paper yet.