Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pacific Lamprey Inspired Climbing (2212.06746v1)

Published 13 Dec 2022 in cs.RO

Abstract: Snakes and their bio-inspired robot counterparts have demonstrated locomotion on a wide range of terrains. However, dynamic vertical climbing is one locomotion strategy that has received little attention in the existing snake robotics literature. We demonstrate a new scansorial gait and robot inspired by the locomotion of the Pacific Lamprey. This new gait allows a robot to steer while climbing on flat, near-vertical surfaces. A reduced-order model is developed and used to explore the relationship between body actuation and vertical and lateral motions of the robot. Trident, the new wall climbing lamprey-inspired robot, demonstrates dynamic climbing on flat vertical surfaces with a peak net vertical stride displacement of 4.1 cm per step. Actuating at 1.3 Hz, Trident attains a vertical climbing speed of 4.8 cm/s (0.09 Bl/s) at specific resistance of 8.3. Trident can also traverse laterally at 9 cm/s (0.17 Bl/s). Moreover, Trident is able to make 14\% longer strides than the Pacific Lamprey when climbing vertically. The computational and experimental results demonstrate that a lamprey-inspired climbing gait coupled with appropriate attachment is a useful climbing strategy for snake robots climbing near vertical surfaces with limited push points.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. J. Gray, “The mechanism of locomotion in snakes,” Journal of experimental biology, vol. 23, no. 2, pp. 101–120, 1946.
  2. R. D. Maladen, Y. Ding, C. Li, and D. I. Goldman, “Undulatory swimming in sand: subsurface locomotion of the sandfish lizard,” science, vol. 325, no. 5938, pp. 314–318, 2009.
  3. H. C. Astley and B. C. Jayne, “Effects of perch diameter and incline on the kinematics, performance and modes of arboreal locomotion of corn snakes (elaphe guttata),” Journal of Experimental Biology, vol. 210, no. 21, pp. 3862–3872, 2007.
  4. J. J. Socha, “Gliding flight in the paradise tree snake,” Nature, vol. 418, no. 6898, pp. 603–604, 2002.
  5. S. Hirose and M. Mori, “Biologically inspired snake-like robots,” in 2004 IEEE International Conference on Robotics and Biomimetics.   IEEE, 2004, pp. 1–7.
  6. T. Kamegawa, T. Yarnasaki, H. Igarashi, and F. Matsuno, “Development of the snake-like rescue robot” kohga”,” in IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 5.   IEEE, 2004, pp. 5081–5086.
  7. J. Whitman, N. Zevallos, M. Travers, and H. Choset, “Snake robot urban search after the 2017 mexico city earthquake,” in 2018 IEEE international symposium on safety, security, and rescue robotics (SSRR).   IEEE, 2018, pp. 1–6.
  8. H. Marvi, C. Gong, N. Gravish, H. Astley, M. Travers, R. L. Hatton, J. R. Mendelson, H. Choset, D. L. Hu, and D. I. Goldman, “Sidewinding with minimal slip: Snake and robot ascent of sandy slopes,” Science, vol. 346, no. 6206, pp. 224–229, 2014.
  9. K. A. McIsaac and J. P. Ostrowski, “Motion planning for anguilliform locomotion,” IEEE Transactions on Robotics and Automation, vol. 19, no. 4, pp. 637–652, 2003.
  10. M. Tesch, K. Lipkin, I. Brown, R. Hatton, A. Peck, J. Rembisz, and H. Choset, “Parameterized and scripted gaits for modular snake robots,” Advanced Robotics, vol. 23, no. 9, pp. 1131–1158, 2009.
  11. J.-P. Gasc, D. Cattaert, C. Chasserat, and F. Clarac, “Propulsive action of a snake pushing against a single site: its combined analysis,” Journal of morphology, vol. 201, no. 3, pp. 315–329, 1989.
  12. A. A. Transeth, R. I. Leine, C. Glocker, K. Y. Pettersen, and P. Liljebäck, “Snake robot obstacle-aided locomotion: Modeling, simulations, and experiments,” IEEE Transactions on Robotics, vol. 24, no. 1, pp. 88–104, 2008.
  13. A. Crespi and A. J. Ijspeert, “Amphibot ii: An amphibious snake robot that crawls and swims using a central pattern generator,” in Proceedings of the 9th international conference on climbing and walking robots (CLAWAR 2006), no. CONF, 2006, pp. 19–27.
  14. S. Hirose and H. Yamada, “Snake-like robots [tutorial],” IEEE Robotics & Automation Magazine, vol. 16, no. 1, pp. 88–98, 2009.
  15. A. Shapiro, A. Greenfield, and H. Choset, “Frictional compliance model development and experiments for snake robot climbing,” in Proceedings 2007 IEEE International Conference on Robotics and Automation.   IEEE, 2007, pp. 574–579.
  16. T. Takemori, M. Tanaka, and F. Matsuno, “Ladder climbing with a snake robot,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 1–9.
  17. K. Lipkin, I. Brown, A. Peck, H. Choset, J. Rembisz, P. Gianfortoni, and A. Naaktgeboren, “Differentiable and piecewise differentiable gaits for snake robots,” in 2007 IEEE/RSJ international conference on intelligent robots and systems.   IEEE, 2007, pp. 1864–1869.
  18. J. Dickson and J. Clark, “The effect of sprawl angle and wall inclination on a bipedal, dynamic climbing platform,” in Adaptive Mobile Robotics.   World Scientific, 2012, pp. 459–466.
  19. G. A. Lynch, J. E. Clark, P.-C. Lin, and D. E. Koditschek, “A bioinspired dynamical vertical climbing robot,” The International Journal of Robotics Research, vol. 31, no. 8, pp. 974–996, 2012.
  20. W. R. Provancher, S. I. Jensen-Segal, and M. A. Fehlberg, “Rocr: An energy-efficient dynamic wall-climbing robot,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 5, pp. 897–906, 2010.
  21. D. L. Hu, J. Nirody, T. Scott, and M. J. Shelley, “The mechanics of slithering locomotion,” Proceedings of the National Academy of Sciences, vol. 106, no. 25, pp. 10 081–10 085, 2009.
  22. J. J. Socha, T. O’Dempsey, and M. LaBarbera, “A 3-d kinematic analysis of gliding in a flying snake, chrysopelea paradisi,” Journal of Experimental Biology, vol. 208, no. 10, pp. 1817–1833, 2005.
  23. F. Jafari, S. Tahmasian, S. D. Ross, and J. J. Socha, “Control of gliding in a flying snake-inspired n-chain model,” Bioinspiration & biomimetics, vol. 12, no. 6, p. 066002, 2017.
  24. R. Ariizumi and F. Matsuno, “Dynamic analysis of three snake robot gaits,” IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1075–1087, 2017.
  25. Y. Guan, H. Zhu, W. Wu, X. Zhou, L. Jiang, C. Cai, L. Zhang, and H. Zhang, “A modular biped wall-climbing robot with high mobility and manipulating function,” IEEE/ASME transactions on mechatronics, vol. 18, no. 6, pp. 1787–1798, 2012.
  26. R. L. Hatton and H. Choset, “Generating gaits for snake robots: annealed chain fitting and keyframe wave extraction,” Autonomous Robots, vol. 28, no. 3, pp. 271–281, 2010.
  27. D. Rollinson and H. Choset, “Gait-based compliant control for snake robots,” in 2013 IEEE International Conference on Robotics and Automation.   IEEE, 2013, pp. 5138–5143.
  28. P. Kemp, T. Tsuzaki, and M. Moser, “Linking behaviour and performance: intermittent locomotion in a climbing fish,” Journal of Zoology, vol. 277, no. 2, pp. 171–178, 2009.
  29. Q. Zhu, M. Moser, and P. Kemp, “Numerical analysis of a unique mode of locomotion: vertical climbing by pacific lamprey,” Bioinspiration & Biomimetics, vol. 6, no. 1, p. 016005, 2011.
  30. D. I. Goldman, T. S. Chen, D. M. Dudek, and R. J. Full, “Dynamics of rapid vertical climbing in cockroaches reveals a template,” Journal of Experimental Biology, vol. 209, no. 15, pp. 2990–3000, 2006.
  31. J. M. Brown, M. P. Austin, B. D. Miller, and J. E. Clark, “Evidence for multiple dynamic climbing gait families,” Bioinspiration & biomimetics, vol. 14, no. 3, p. 036001, 2019.
  32. S. Hirose, “Biologically inspired robots,” Snake-Like Locomotors and Manipulators, 1993.
  33. U. Saranli, M. Buehler, and D. E. Koditschek, “Rhex: A simple and highly mobile hexapod robot,” The International Journal of Robotics Research, vol. 20, no. 7, pp. 616–631, 2001.
  34. M. J. Spenko, G. C. Haynes, J. Saunders, M. R. Cutkosky, A. A. Rizzi, R. J. Full, and D. E. Koditschek, “Biologically inspired climbing with a hexapedal robot,” Journal of field robotics, vol. 25, no. 4-5, pp. 223–242, 2008.
  35. D. E. Koditschek, R. J. Full, and M. Buehler, “Mechanical aspects of legged locomotion control,” Arthropod structure & development, vol. 33, no. 3, pp. 251–272, 2004.
  36. A. T. Asbeck, S. Kim, M. R. Cutkosky, W. R. Provancher, and M. Lanzetta, “Scaling hard vertical surfaces with compliant microspine arrays,” The International Journal of Robotics Research, vol. 25, no. 12, pp. 1165–1179, 2006.
  37. L. E. Weiss, R. Merz, F. B. Prinz, G. Neplotnik, P. Padmanabhan, L. Schultz, and K. Ramaswami, “Shape deposition manufacturing of heterogeneous structures,” Journal of Manufacturing Systems, vol. 16, no. 4, pp. 239–248, 1997.
  38. B. D. Miller and J. E. Clark, “Dynamic similarity and scaling for the design of dynamical legged robots,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2015, pp. 5719–5726.
  39. M. Porez, F. Boyer, and A. J. Ijspeert, “Improved lighthill fish swimming model for bio-inspired robots: Modeling, computational aspects and experimental comparisons,” The International Journal of Robotics Research, vol. 33, no. 10, pp. 1322–1341, 2014.

Summary

We haven't generated a summary for this paper yet.