Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Maxflow via Dynamic Interior Point Methods (2212.06315v1)

Published 13 Dec 2022 in cs.DS and math.OC

Abstract: In this paper we provide an algorithm for maintaining a $(1-\epsilon)$-approximate maximum flow in a dynamic, capacitated graph undergoing edge additions. Over a sequence of $m$-additions to an $n$-node graph where every edge has capacity $O(\mathrm{poly}(m))$ our algorithm runs in time $\widehat{O}(m \sqrt{n} \cdot \epsilon{-1})$. To obtain this result we design dynamic data structures for the more general problem of detecting when the value of the minimum cost circulation in a dynamic graph undergoing edge additions obtains value at most $F$ (exactly) for a given threshold $F$. Over a sequence $m$-additions to an $n$-node graph where every edge has capacity $O(\mathrm{poly}(m))$ and cost $O(\mathrm{poly}(m))$ we solve this thresholded minimum cost flow problem in $\widehat{O}(m \sqrt{n})$. Both of our algorithms succeed with high probability against an adaptive adversary. We obtain these results by dynamizing the recent interior point method used to obtain an almost linear time algorithm for minimum cost flow (Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva 2022), and introducing a new dynamic data structure for maintaining minimum ratio cycles in an undirected graph that succeeds with high probability against adaptive adversaries.

Citations (5)

Summary

We haven't generated a summary for this paper yet.