Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 35 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 81 tok/s
GPT OSS 120B 439 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

High-dimensional Berry-Esseen Bound for $m$-Dependent Random Samples (2212.05355v1)

Published 10 Dec 2022 in math.PR, math.ST, and stat.TH

Abstract: In this work, we provide a $(n/m){-1/2}$-rate finite sample Berry-Esseen bound for $m$-dependent high-dimensional random vectors over the class of hyper-rectangles. This bound imposes minimal assumptions on the random vectors such as nondegenerate covariances and finite third moments. The proof uses inductive relationships between anti-concentration inequalities and Berry--Esseen bounds, which are inspired by the telescoping method of Chen and Shao (2004) and the recursion method of Kuchibhotla and Rinaldo (2020). Performing a dual induction based on the relationships, we obtain tight Berry-Esseen bounds for dependent samples.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.