Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Dynamically enhancing qubit-photon interactions with anti-squeezing (2212.04991v3)

Published 9 Dec 2022 in quant-ph

Abstract: The interaction strength of an oscillator to a qubit grows with the oscillator's vacuum field fluctuations. The well known degenerate parametric oscillator has revived interest in the regime of strongly detuned squeezing, where its eigenstates are squeezed Fock states. Owing to these amplified field fluctuations, it was recently proposed that squeezing this oscillator would dynamically boost qubit-photon interactions. In a superconducting circuit experiment, we observe a two-fold increase in the dispersive interaction between a qubit and an oscillator at 5.5 dB of squeezing, demonstrating in-situ dynamical control of qubit-photon interactions. This work initiates the experimental coupling of oscillators of squeezed photons to qubits, and cautiously motivates their dissemination in experimental platforms seeking enhanced interactions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. C. Leroux, L. C. G. Govia, and A. A. Clerk, Enhancing cavity quantum electrodynamics via antisqueezing: Synthetic ultrastrong coupling, Phys. Rev. Lett. 120, 093602 (2018).
  2. M.-A. Lemonde, N. Didier, and A. A. Clerk, Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification, Nature Communications 7, 11338 (2016).
  3. S. Zeytinoğlu, A. İmamoğlu, and S. Huber, Engineering matter interactions using squeezed vacuum, Phys. Rev. X 7, 021041 (2017).
  4. M. A. Castellanos-Beltran and K. W. Lehnert, Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator, Appl. Phys. Lett. 91, 083509 (2007).
  5. H. J. Carmichael, G. J. Milburn, and D. F. Walls, Squeezing in a detuned parametric amplifier, Journal of Physics A: Mathematical and General 17, 469 (1984).
  6. I. Shani, E. G. Dalla Torre, and M. Stern, Coherence properties of a spin in a squeezed resonator, Phys. Rev. A 105, 022617 (2022).
  7. SNAIL: superconducting nonlinear asymmetric inductive element.
  8. M. Villiers, Phd thesis, Sorbonne Université (2023).
  9. J. J. Viennot, X. Ma, and K. W. Lehnert, Phonon-number-sensitive electromechanics, Phys. Rev. Lett. 121, 183601 (2018).
  10. I. Besedin and A. P. Menushenkov, Quality factor of a transmission line coupled coplanar waveguide resonator, EPJ Quantum Technology 5, 2 (2018).
  11. D. A. Steck, Quantum and Atom Optics (2007).
  12. M. Mirrahimi and P. Rouchon, Dynamics and Control of Open Quantum Systems (2015).
  13. M. Boissonneault, J. M. Gambetta, and A. Blais, Dispersive regime of circuit qed: Photon-dependent qubit dephasing and relaxation rates, Phys. Rev. A 79, 013819 (2009).
  14. C. Gardiner and P. Zoller, Quantum Noise (Springer Berlin, Heidelberg, 2004).
  15. B. Levitan, Qubit measurement using an on-chip parametric amplifier (McGill University, 2015).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com