Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of Drug repurposing Knowledge graphs for Covid-19 (2212.03911v1)

Published 7 Dec 2022 in cs.AI and cs.LG

Abstract: Knowledge graph (KG) is used to represent data in terms of entities and structural relations between the entities. This representation can be used to solve complex problems such as recommendation systems and question answering. In this study, a set of candidate drugs for COVID-19 are proposed by using Drug repurposing knowledge graph (DRKG). DRKG is a biological knowledge graph constructed using a vast amount of open source biomedical knowledge to understand the mechanism of compounds and the related biological functions. Node and relation embeddings are learned using knowledge graph embedding models and neural network and attention related models. Different models are used to get the node embedding by changing the objective of the model. These embeddings are later used to predict if a candidate drug is effective to treat a disease or how likely it is for a drug to bind to a protein associated to a disease which can be modelled as a link prediction task between two nodes. RESCAL performed the best on the test dataset in terms of MR, MRR and Hits@3.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (1)

Summary

We haven't generated a summary for this paper yet.