Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monte Carlo convergence rates for $k$th moments in Banach spaces (2212.03797v2)

Published 7 Dec 2022 in math.NA, cs.NA, math.FA, and math.PR

Abstract: We formulate standard and multilevel Monte Carlo methods for the $k$th moment $\mathbb{M}k_\varepsilon[\xi]$ of a Banach space valued random variable $\xi\colon\Omega\to E$, interpreted as an element of the $k$-fold injective tensor product space $\otimesk_\varepsilon E$. For the standard Monte Carlo estimator of $\mathbb{M}k_\varepsilon[\xi]$, we prove the $k$-independent convergence rate $1-\frac{1}{p}$ in the $L_q(\Omega;\otimesk_\varepsilon E)$-norm, provided that (i) $\xi\in L_{kq}(\Omega;E)$ and (ii) $q\in[p,\infty)$, where $p\in[1,2]$ is the Rademacher type of $E$. By using the fact that Rademacher averages are dominated by Gaussian sums combined with a version of Slepian's inequality for Gaussian processes due to Fernique, we moreover derive corresponding results for multilevel Monte Carlo methods, including a rigorous error estimate in the $L_q(\Omega;\otimesk_\varepsilon E)$-norm and the optimization of the computational cost for a given accuracy. Whenever the type of the Banach space $E$ is $p=2$, our findings coincide with known results for Hilbert space valued random variables. We illustrate the abstract results by three model problems: second-order elliptic PDEs with random forcing or random coefficient, and stochastic evolution equations. In these cases, the solution processes naturally take values in non-Hilbertian Banach spaces. Further applications, where physical modeling constraints impose a setting in Banach spaces of type $p<2$, are indicated.

Summary

We haven't generated a summary for this paper yet.