Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Hamming Weights of Linear Codes from Quadratic Forms over Finite Fields of Even Characteristic (2212.03484v1)

Published 7 Dec 2022 in cs.IT and math.IT

Abstract: The generalized Hamming weight of linear codes is a natural generalization of the minimum Hamming distance. They convey the structural information of a linear code and determine its performance in various applications, and have become one of important research topics in coding theory. Recently, Li (IEEE Trans. Inf. Theory, 67(1): 124-129, 2021) and Li and Li (Discrete Math., 345: 112718, 2022) obtained the complete weight hierarchy of linear codes from a quadratic form over a finite field of odd characteristic by analysis of the solutions of the restricted quadratic equation in its subspace. In this paper, we further determine the complete weight hierarchy of linear codes from a quadratic form over a finite field of even characteristic by carefully studying the behavior of the quadratic form on the subspaces of this field and its dual space, and complement the results of Li and Li.

Citations (5)

Summary

We haven't generated a summary for this paper yet.