Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Caching Contents with Varying Popularity using Restless Bandits (2212.03291v3)

Published 31 Oct 2022 in cs.NI and cs.AI

Abstract: Mobile networks are experiencing prodigious increase in data volume and user density , which exerts a great burden on mobile core networks and backhaul links. An efficient technique to lessen this problem is to use caching i.e. to bring the data closer to the users by making use of the caches of edge network nodes, such as fixed or mobile access points and even user devices. The performance of a caching depends on contents that are cached. In this paper, we examine the problem of content caching at the wireless edge(i.e. base stations) to minimize the discounted cost incurred over infinite horizon. We formulate this problem as a restless bandit problem, which is hard to solve. We begin by showing an optimal policy is of threshold type. Using these structural results, we prove the indexability of the problem, and use Whittle index policy to minimize the discounted cost.

Summary

We haven't generated a summary for this paper yet.