Lower Bounding Ground-State Energies of Local Hamiltonians Through the Renormalization Group (2212.03014v3)
Abstract: Given a renormalization scheme, we show how to formulate a tractable convex relaxation of the set of feasible local density matrices of a many-body quantum system. The relaxation is obtained by introducing a hierarchy of constraints between the reduced states of ever-growing sets of lattice sites. The coarse-graining maps of the underlying renormalization procedure serve to eliminate a vast number of those constraints, such that the remaining ones can be enforced with reasonable computational means. This can be used to obtain rigorous lower bounds on the ground state energy of arbitrary local Hamiltonians, by performing a linear optimization over the resulting convex relaxation of reduced quantum states. The quality of the bounds crucially depends on the particular renormalization scheme, which must be tailored to the target Hamiltonian. We apply our method to 1D translation-invariant spin models, obtaining energy bounds comparable to those attained by optimizing over locally translation-invariant states of $n\gtrsim 100$ spins. Beyond this demonstration, the general method can be applied to a wide range of other problems, such as spin systems in higher spatial dimensions, electronic structure problems, and various other many-body optimization problems, such as entanglement and nonlocality detection.
- D. A. Mazziotti and S. A. Rice, Reduced-Density-Matrix Mechanics (John Wiley & Sons, Incorporated, Hoboken, 2007).
- T. Baumgratz and M. B. Plenio, Lower bounds for ground states of condensed matter systems, New Journal of Physics 14, 023027 (2012).
- A. A. Klyachko, Quantum marginal problem and N-representability, Journal of Physics: Conference Series 36, 72 (2006).
- A. Broadbent and A. B. Grilo, QMA-hardness of Consistency of Local Density Matrices with Applications to Quantum Zero-Knowledge, in 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS) (2020) pp. 196–205.
- Y.-K. Liu, M. Christandl, and F. Verstraete, Quantum Computational Complexity of the N-Representability Problem: QMA Complete, Phys. Rev. Lett. 98, 110503 (2007).
- V. Coffman, J. Kundu, and W. K. Wootters, Distributed entanglement, Phys. Rev. A 61, 052306 (2000).
- P. W. Anderson, Limits on the Energy of the Antiferromagnetic Ground State, Phys. Rev. 83, 1260 (1951).
- J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Microscopic Theory of Superconductivity, Phys. Rev. 106, 162 (1957).
- R. B. Laughlin, Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations, Phys. Rev. Lett. 50, 1395 (1983).
- M. C. Gutzwiller, Effect of Correlation on the Ferromagnetism of Transition Metals, Phys. Rev. Lett. 10, 159 (1963).
- M. C. Gutzwiller, Correlation of Electrons in a Narrow s𝑠sitalic_s Band, Phys. Rev. 137, A1726 (1965).
- L. Tagliacozzo, G. Evenbly, and G. Vidal, Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law, Phys. Rev. B 80, 235127 (2009).
- G. Vidal, Class of Quantum Many-Body States That Can Be Efficiently Simulated, Phys. Rev. Lett. 101, 110501 (2008).
- J. I. Cirac and F. Verstraete, Renormalization and tensor product states in spin chains and lattices, Journal of Physics A: Mathematical and Theoretical 42, 504004 (2009).
- L. Vandenberghe and S. Boyd, Semidefinite Programming, SIAM Review 38, 49 (1996).
- D. A. Mazziotti, Variational reduced-density-matrix method using three-particle N𝑁Nitalic_N-representability conditions with application to many-electron molecules, Phys. Rev. A 74, 032501 (2006).
- M. Navascués, S. Pironio, and A. Acín, Bounding the Set of Quantum Correlations, Phys. Rev. Lett. 98, 010401 (2007).
- A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, Complete family of separability criteria, Phys. Rev. A 69, 022308 (2004).
- A. Haim, R. Kueng, and G. Refael, Variational-Correlations Approach to Quantum Many-body Problems, arXiv e-prints , arXiv:2001.06510 (2020), arXiv:2001.06510 [cond-mat.str-el] .
- I. Frérot, F. Baccari, and A. Acín, Unveiling Quantum Entanglement in Many-Body Systems from Partial Information, PRX Quantum 3, 010342 (2022).
- T. Barthel and R. Hübener, Solving Condensed-Matter Ground-State Problems by Semidefinite Relaxations, Phys. Rev. Lett. 108, 200404 (2012).
- O. Gühne and G. Tóth, Entanglement detection, Physics Reports 474, 1 (2009).
- V. Scarani, Bell Nonlocality (Oxford University Press, 2019).
- A. Peres, Separability Criterion for Density Matrices, Phys. Rev. Lett. 77, 1413 (1996).
- M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Physics Letters A 223, 1 (1996).
- L. Gurvits, Classical deterministic complexity of Edmonds’ problem and Quantum Entanglement, (2003), arXiv:quant-ph/0303055 [quant-ph] .
- A. Sawicki, M. Oszmaniec, and M. Kuś, Critical sets of the total variance can detect all stochastic local operations and classical communication classes of multiparticle entanglement, Phys. Rev. A 86, 040304 (2012).
- M. Fadel and J. Tura, Bounding the Set of Classical Correlations of a Many-Body System, Phys. Rev. Lett. 119 (2017).
- I. Frérot and T. Roscilde, Detecting Many-Body Bell Nonlocality by Solving Ising Models, Phys. Rev. Lett. 126 (2021).
- H. W. Lin, Bootstraps to strings: solving random matrix models with positivity, Journal of High Energy Physics 2020, 90 (2020).
- X. Han, S. A. Hartnoll, and J. Kruthoff, Bootstrapping Matrix Quantum Mechanics, Phys. Rev. Lett. 125, 041601 (2020).
- D. Berenstein and G. Hulsey, Bootstrapping Simple QM Systems, (2021), arXiv:2108.08757 [hep-th] .
- S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).
- U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Annals of Physics 326, 96 (2011).
- D. Bertsekas, Convex Optimization Theory, Athena Scientific optimization and computation series (Athena Scientific, 2009).
- D. A. Mazziotti and R. M. Erdahl, Uncertainty relations and reduced density matrices: Mapping many-body quantum mechanics onto four particles, Phys. Rev. A 63, 042113 (2001).
- D. A. Mazziotti, Large-Scale Semidefinite Programming for Many-Electron Quantum Mechanics, Phys. Rev. Lett. 106, 083001 (2011).
- D. A. Mazziotti, Structure of Fermionic Density Matrices: Complete N𝑁Nitalic_N-Representability Conditions, Phys. Rev. Lett. 108, 263002 (2012).
- D. A. Mazziotti, Quantum Many-Body Theory from a Solution of the N𝑁Nitalic_N-Representability Problem, Phys. Rev. Lett. 130, 153001 (2023).
- J. R. Hammond and D. A. Mazziotti, Variational reduced-density-matrix calculation of the one-dimensional Hubbard model, Phys. Rev. A 73, 062505 (2006).
- N. Shenvi and A. F. Izmaylov, Active-Space N𝑁Nitalic_N-Representability Constraints for Variational Two-Particle Reduced Density Matrix Calculations, Phys. Rev. Lett. 105, 213003 (2010).
- X. Han, Quantum Many-body Bootstrap, arXiv e-prints , arXiv:2006.06002 (2020), arXiv:2006.06002 [cond-mat.str-el] .
- S. Lawrence, Semidefinite programs at finite fermion density, Phys. Rev. D 107, 094511 (2023).
- C. O. Nancarrow and Y. Xin, Bootstrapping the gap in quantum spin systems, JHEP 08, 052, arXiv:2211.03819 [hep-th] .
- J. B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM Journal on optimization 11, 796 (2001).
- S. Pironio, M. Navascués, and A. Acín, Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables, SIAM Journal on Optimization 20, 2157 (2010), https://doi.org/10.1137/090760155 .
- R. King, An Improved Approximation Algorithm for Quantum Max-Cut on Triangle-Free Graphs, Quantum 7, 1180 (2023).
- L. Hardy, Quantum Theory From Five Reasonable Axioms, (2001), arXiv:quant-ph/0101012 [quant-ph] .
- B. Dakic and C. Brukner, Quantum Theory and Beyond: Is Entanglement Special?, (2009), arXiv:0911.0695 [quant-ph] .
- H. Barnum, M. P. Müller, and C. Ududec, Higher-order interference and single-system postulates characterizing quantum theory, New Journal of Physics 16, 123029 (2014).
- G. Chiribella, G. M. D’Ariano, and P. Perinotti, Probabilistic theories with purification, Phys. Rev. A 81, 062348 (2010).
- M. Navascués, S. Singh, and A. Acín, Connector Tensor Networks: A Renormalization-Type Approach to Quantum Certification, Phys. Rev. X 10, 021064 (2020).
- M. Navascués, F. Baccari, and A. Acín, Entanglement marginal problems, Quantum 5, 589 (2021).
- H. Moradmard, M. Shahri Naseri, and S. Mahdavifar, The 1D Spin-1/2 XXZ Model in Transverse Uniform and Staggered Magnetic Fields, Journal of Superconductivity and Novel Magnetism 27, 1265 (2014).
- M. Karbach and K.-H. Mutter, The antiferromagnetic spin-1/2-XXZ model on rings with an odd number of sites, Journal of Physics A: Mathematical and General 28, 4469 (1995).
- P. Li and Y. He, Ring frustration and factorizable correlation functions of critical spin rings, Phys. Rev. E 99, 032135 (2019).
- J. Löfberg, YALMIP : A Toolbox for Modeling and Optimization in MATLAB, in In Proceedings of the CACSD Conference (Taipei, Taiwan, 2004).
- M. ApS, The MOSEK optimization toolbox for MATLAB manual. Version 9.3. (2019).
- N. Parikh and S. P. Boyd, Proximal Algorithms, Found. Trends Optim. 1, 127 (2013).
- R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University Press, 1990).
- A. W. Sandvik, Finite-size scaling of the ground-state parameters of the two-dimensional Heisenberg model, Phys. Rev. B 56, 11678 (1997).
- K. Gunst, F. Verstraete, and D. Van Neck, The Three-Legged Tree Tensor Networks with SU(2)- and molecular point group symmetry, arXiv e-prints , arXiv:1901.08926 (2019), arXiv:1901.08926 [cond-mat.str-el] .