Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spuriosity Rankings: Sorting Data to Measure and Mitigate Biases (2212.02648v3)

Published 5 Dec 2022 in cs.CV, cs.AI, cs.HC, and cs.LG

Abstract: We present a simple but effective method to measure and mitigate model biases caused by reliance on spurious cues. Instead of requiring costly changes to one's data or model training, our method better utilizes the data one already has by sorting them. Specifically, we rank images within their classes based on spuriosity (the degree to which common spurious cues are present), proxied via deep neural features of an interpretable network. With spuriosity rankings, it is easy to identify minority subpopulations (i.e. low spuriosity images) and assess model bias as the gap in accuracy between high and low spuriosity images. One can even efficiently remove a model's bias at little cost to accuracy by finetuning its classification head on low spuriosity images, resulting in fairer treatment of samples regardless of spuriosity. We demonstrate our method on ImageNet, annotating $5000$ class-feature dependencies ($630$ of which we find to be spurious) and generating a dataset of $325k$ soft segmentations for these features along the way. Having computed spuriosity rankings via the identified spurious neural features, we assess biases for $89$ diverse models and find that class-wise biases are highly correlated across models. Our results suggest that model bias due to spurious feature reliance is influenced far more by what the model is trained on than how it is trained.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mazda Moayeri (16 papers)
  2. Wenxiao Wang (63 papers)
  3. Sahil Singla (66 papers)
  4. Soheil Feizi (127 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.