Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Astronomical source detection in radio continuum maps with deep neural networks (2212.02538v1)

Published 5 Dec 2022 in astro-ph.IM

Abstract: Source finding is one of the most challenging tasks in upcoming radio continuum surveys with SKA precursors, such as the Evolutionary Map of the Universe (EMU) survey of the Australian SKA Pathfinder (ASKAP) telescope. The resolution, sensitivity, and sky coverage of such surveys is unprecedented, requiring new features and improvements to be made in existing source finders. Among them, reducing the false detection rate, particularly in the Galactic plane, and the ability to associate multiple disjoint islands into physical objects. To bridge this gap, we developed a new source finder, based on the Mask R-CNN object detection framework, capable of both detecting and classifying compact, extended, spurious, and poorly imaged sources in radio continuum images. The model was trained using ASKAP EMU data, observed during the Early Science and pilot survey phase, and previous radio survey data, taken with the VLA and ATCA telescopes. On the test sample, the final model achieves an overall detection completeness above 85\%, a reliability of $\sim$65\%, and a classification precision/recall above 90\%. Results obtained for all source classes are reported and discussed.

Citations (7)

Summary

We haven't generated a summary for this paper yet.