Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 205 tok/s Pro
2000 character limit reached

Hall effects in Carroll dynamics (2212.02360v4)

Published 5 Dec 2022 in hep-th, cond-mat.other, and gr-qc

Abstract: ``Do Carroll particles move?'' The answer depends on the characteristics of the particle such as its mass, spin, electric charge, and magnetic moment. A massive Carroll particle (closely related to fractons) does not move; its immobility follows from Carroll boost symmetry which implies dipole conservation, but not conversely. A massless Carroll particle may propagate by following the Hall law, consistently with the partial breaking of the Carroll boost symmetry. The framework is extended to Carroll field theory. In $d=2$ space dimensions, the Carroll group has a two-fold central extension which allows us to generalize the dynamics to massive and massless particles, including anyons. The anyonic spin and magnetic moment combine with the doubly-extended structure parameterized by two Casimir invariants interpreted as intrinsic magnetization and non-commutativity parameter. The extended Carroll particle subjected to an electromagnetic background field moves following a generalized Hall law which includes a Zeeman force. This theory is illustrated by massless, uncharged anyons with doubly-centrally extended structure we call exotic photons, which move on the horizon of a Black Hole, giving rise to an anyonic spin-Hall Effect.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (168)
  1. C. Duval et al, “Exotic Galilei group, IQHE, and Chern-Simons electrodynamics.” Unpublished notes. Marseille (1995)
  2. J. M. Lévy-Leblond, “Une nouvelle limite non-relativiste du group de Poincaré,” Ann. Inst. H Poincaré 3 (1965) 1;
  3. V. D. Sen Gupta, “On an Analogue of the Galileo Group,” Il Nuovo Cimento 54 (1966) 512.
  4. H. Bacry and J. Lévy-Leblond, “Possible kinematics,” J. Math. Phys. 9 (1968), 1605-1614
  5. J-P Anker, F Ziegler, “Relativity without light: A new proof of Ignatowski’s theorem,” J. Geom. Phys. 158 (2020) 103871 https://doi.org/10.1016/j.geomphys.2020.103871:
  6. J-M Souriau, “Mécanique statistique et thermodynamique”, chap.IV sect. 18 : “États statistiques” of the never published 2nd Edition of his book SSD . p.324 # (18.87) written around 1974 [communication of F. Ziegler].
  7. C. Duval, G. W. Gibbons, P. A. Horvathy and P. M. Zhang, “Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time,” Class. Quant. Grav.  31 (2014) 085016 [arXiv:1402.0657 [gr-qc]].
  8. A. Ngendakumana, J. Nzotungicimpaye and L.  Todjihounde, “Noncommutative Phase Spaces by Coadjoint Orbits Method,” SIGMA 7 (2011), 116 A. Ngendakumana, J. Nzotungicimpaye and L. Todjihounde, “Group theoretical construction of planar Noncommutative Phase Spaces,” J. Math. Phys. 55 (2014), 013508 A. Ngendakumana, “Group Theoretical Construction of Planar Noncommutative Systems,” [arXiv:1401.5213 [math-ph]].
  9. A. Ngendakumana, J. Nzotungicimpaye and L. Todjihounde, “Noncommutative Phase Spaces on Aristotle group,” QScience Connect 2013 (2013), 2 [arXiv:1212.6329 [math-ph]].
  10. E. Bergshoeff, J. Gomis and G. Longhi, “Dynamics of Carroll Particles,” Class. Quant. Grav. 31 (2014) no.20, 205009 [arXiv:1405.2264 [hep-th]]. See also the preliminary version J. Gomis and F. Passerini, “Super Carroll space, Carrollian super-particle and Carrollian super-string” 2005 (unpublished).
  11. G. Dautcourt, “On the ultrarelativistic limit of general relativity,” Acta Phys. Polon. B 29 (1998) 1047 [gr-qc/9801093].
  12. M. Henneaux, “Geometry of Zero Signature Space-times,” Bull. Soc. Math. Belg. 31 (1979), 47-63 PRINT-79-0606 (PRINCETON).
  13. G. W. Gibbons, “Thoughts on tachyon cosmology,” Class. Quant. Grav.  20 (2003) S321 [hep-th/0301117]. G. W. Gibbons, K. Hashimoto and Piljin Yi, “Tachyon condensates, Carrollian contractions of the Lorentz group and fundamental strings,” JHEP (2002) 0209: 061 [hep-th/0209034].
  14. H. Bondi, M. G. van der Burg, and A. W. Metzner, “Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems,” Proc. Roy. Soc. Lond. A 269 (1962) 21; R. Sachs, “Asymptotic symmetries in gravitational theory,” Phys. Rev.  128 (1962) 2851.
  15. A. Bagchi, “Correspondence between Asymptotically Flat Spacetimes and Nonrelativistic Conformal Field Theories,” Phys. Rev. Lett.  105 (2010) 171601.
  16. C. Duval, G. W. Gibbons, P. A. Horvathy, “Conformal Carroll groups and BMS symmetry,” Class. Quant. Grav. 31 (2014) 092001 [arXiv:1402.5894 [gr-qc]].
  17. C. Duval, G. W. Gibbons and P. A. Horvathy, “Conformal Carroll groups,” J. Phys. A 47 (2014) 335204
  18. C. Duval, “Event horizon is Carroll,” e-mail message sent to (PH) in Sept. 2015 (unpublished).
  19. L. Marsot, “Caractérisation géométrique des structures de Bargmann et de Carroll et des groupes de Schrödinger et de Bondi-Metzner-Sachs,” Master thesis written under the direction of C. Duval. Marseille University 2016. (unpublished).
  20. L. Donnay and C. Marteau, “Carrollian Physics at the Black Hole Horizon,” Class. Quant. Grav. 36 (2019) no.16, 165002 [arXiv:1903.09654 [hep-th]] L. Donnay, A. Fiorucci, Y. Herfray and R. Ruzziconi, “A Carrollian Perspective on Celestial Holography,” [arXiv:2202.04702 [hep-th]]. See also hydro below.
  21. L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos and K. Siampos, “Flat holography and Carrollian fluids,” JHEP 07 (2018), 165 [arXiv:1802.06809 [hep-th]]. A. C. Petkou, P. M. Petropoulos, D. R. Betancour and K. Siampos, “Relativistic Fluids, Hydrodynamic Frames and their Galilean versus Carrollian Avatars,” [arXiv:2205.09142 [hep-th]].
  22. L. Freidel and P. Jai-akson, “Carrollian hydrodynamics from symmetries,” [arXiv:2209.03328 [hep-th]]. L. Freidel and P. Jai-akson, “Carrollian hydrodynamics and symplectic structure on stretched horizons,” [arXiv:2211.06415 [gr-qc]].
  23. J-M. Souriau, “Le milieu élastique soumis aux ondes gravitationnelles,” In Ondes et radiations gravitationnelles (Paris, 1973), volume 220 of Colloques Internationaux du Centre National de la Recherche Scientifique, pages 243–256. Éditions du CNRS, Paris, 1974.
  24. Ya. B. Zel’dovich and A. G. Polnarev, “Radiation of gravitational waves by a cluster of superdense stars,” Astron. Zh. 51, 30 (1974) [Sov. Astron. 18 17 (1974)]; V B Braginsky and L P Grishchuk, “Kinematic resonance and the memory effect in free mass gravitational antennas,” Zh. Eksp. Teor. Fiz. 89 744 (1985) [Sov. Phys. JETP 62, 427 (1985)]
  25. C. Duval, G. W. Gibbons, P. A. Horvathy and P. M. Zhang, “Carroll symmetry of plane gravitational waves,” Class. Quant. Grav. 34 (2017) no.17, 175003 [arXiv:1702.08284 [gr-qc]].
  26. P.-M. Zhang, C. Duval, G. W. Gibbons and P. A. Horvathy, “The Memory Effect for Plane Gravitational Waves,” Phys. Lett. B 772 (2017) 743. [arXiv:1704.05997 [gr-qc]].
  27. P. M. Zhang, C. Duval, G. W. Gibbons and P. A. Horvathy, “Soft gravitons and the memory effect for plane gravitational waves,” Phys. Rev. D 96 (2017) no.6, 064013. [arXiv:1705.01378 [gr-qc]].
  28. J. Figueroa-O’Farrill, “Lie algebraic Carroll/Galilei duality,” J. Math. Phys. 64, 013503 (2023); https://doi.org/10.1063/5.0132661 [arXiv:2210.13924 [math.DG]].
  29. E. Bergshoeff, J. Figueroa-O’Farrill and J. Gomis, “A non-lorentzian primer,” [arXiv:2206.12177 [hep-th]].
  30. J. Figueroa-O’Farrill and S. Prohazka, “Spatially isotropic homogeneous spacetimes,” JHEP 01 (2019), 229 [arXiv:1809.01224 [hep-th]].
  31. J. de Boer, J. Hartong, E. Have, N. A. Obers and W. Sybesma, “Non-Boost Invariant Fluid Dynamics,” SciPost Phys. 9 (2020) no.2, 018 [arXiv:2004.10759 [hep-th]].
  32. R. Andringa, E. Bergshoeff, S. Panda and M. de Roo, “Newtonian Gravity and the Bargmann Algebra,” Class. Quant. Grav. 28 (2011), 105011 [arXiv:1011.1145 [hep-th]].
  33. J. Hartong, N. A. Obers and G. Oling, “Review on Non-Relativistic Gravity,” [arXiv:2212.11309 [gr-qc]].
  34. L. Marsot, “Planar Carrollean dynamics, and the Carroll quantum equation,” J. Geom. Phys. 179 (2022), 104574 [arXiv:2110.08489 [math-ph]].
  35. L. Marsot, P. M. Zhang and P. Horvathy, “Anyonic spin-Hall effect on the black hole horizon,” Phys. Rev. D 106 (2022) no.12, L121503 [arXiv:2207.06302 [gr-qc]].
  36. M. Pretko, “The Fracton Gauge Principle,” Phys. Rev. B 98 (2018) no.11, 115134 [arXiv:1807.11479 [cond-mat.str-el]].
  37. M. Pretko, X. Chen and Y. You, “Fracton Phases of Matter,” Int. J. Mod. Phys. A 35 (2020) no.06, 2030003 [arXiv:2001.01722 [cond-mat.str-el]].
  38. A. Gromov, “Towards classification of Fracton phases: the multipole algebra,” Phys. Rev. X 9 (2019) no.3, 031035 [arXiv:1812.05104 [cond-mat.str-el]].
  39. N. Seiberg, “Field Theories With a Vector Global Symmetry,” SciPost Phys. 8 (2020) no.4, 050 [arXiv:1909.10544 [cond-mat.str-el]].
  40. L. Bidussi, J. Hartong, E. Have, J. Musaeus and S. Prohazka, “Fractons, dipole symmetries and curved spacetime,” SciPost Phys. 12 (2022) no.6, 205 [arXiv:2111.03668 [hep-th]].
  41. A. Jain and K. Jensen, “Fractons in curved space,” SciPost Phys. 12 (2022) no.4, 142 [arXiv:2111.03973 [hep-th]].
  42. K. T. Grosvenor, C. Hoyos, F. Peña-Benitez and P. Surówka, “Space-Dependent Symmetries and Fractons,” Front. in Phys. 9 (2022), 792621 [arXiv:2112.00531 [hep-th]].
  43. A. Głódkowski, F. Peña-Benítez and P. Surówka, “Hydrodynamics of dipole-conserving fluids,” [arXiv:2212.06848 [cond-mat.str-el]].
  44. O. Kasikci, M. Ozkan and Y. Pang, “A Carrollian Orgin of Spacetime Subsystem Symmetry,” [arXiv:2304.11331 [hep-th]].
  45. M. Y. Khlopov, “Fractionally Charged Particles And Confinement Of Quarks,” Pisma Zh. Eksp. Teor. Fiz. 33, 170-173 (1981).
  46. S. Alexander, C. Laermans; R. Orbach; H.M. Rosenberg, “Fracton interpretation of vibrational properties of cross-linked polymers, glasses, and irradiated quartz”, Phys. Rev. B 28, 4615 (1983).
  47. J. Hartong, “Gauging the Carroll Algebra and Ultra-Relativistic Gravity,” JHEP 08 (2015), 069 [arXiv:1505.05011 [hep-th]].
  48. C. Copetti, “Torsion and anomalies in the warped limit of Lifschitz theories,” JHEP 01 (2020), 190 [arXiv:1909.01157 [hep-th]].
  49. F. Peña-Benitez, “Fractons, Symmetric Gauge Fields and Geometry,” [arXiv:2107.13884 [cond-mat.str-el]].
  50. E. Hall, “On a New Action of the Magnet on Electric Currents”. American Journal of Mathematics (1879) 2 (3): 287-292.
  51. M. Stone, The Quantum Hall Effect. Singapore: World Scientific (1992).
  52. F. Ezawa, The Quantum Hall Effects. Field theoretical approach and related topics. World Scientific: Singapore (2000).
  53. R. Karplus, J.M. Luttinger, “Hall Effect in Ferromagnetics,” Phys. Rev. 95 (1954) 1154.
  54. M. I. Dyakonov and V. I. Perel, “Possibility of orientating electron spins with current,” Sov. Phys. JETP Lett. 13: 467. (1971); J. E. Hirsch (1999). “Spin Hall Effect”. Phys. Rev. Lett. 83 (9): 1834-1837. arXiv:cond-mat/9906160.
  55. K. Yu. Bliokh, Yu. P. Bliokh, “Topological spin transport of photons: the optical Magnus effect and Berry Phase,” Phys. Lett. A333, 181 (2004) [physics/0402110]; M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect for light,” Phys. Rev. Lett. 93, 083901 (2004) [cond-mat/0405129]
  56. C. Duval, Z. Horvath and P. A. Horvathy, “Fermat principle for spinning light,” Phys. Rev. D 74 (2006), 021701 [arXiv:cond-mat/0509636 [cond-mat]].
  57. C. Duval, Z. Horvath and P. Horvathy, “Geometrical spinoptics and the optical Hall effect,” J. Geom. Phys. 57 (2007), 925-941 [arXiv:math-ph/0509031 [math-ph]].
  58. M. Stone, V. Dwivedi and T. Zhou, “Berry Phase, Lorentz Covariance, and Anomalous Velocity for Dirac and Weyl Particles,” Phys. Rev. D 91 (2015) no.2, 025004 [arXiv:1406.0354 [hep-th]]. M. Stone, “Berry phase and anomalous velocity of Weyl fermions and Maxwell photons,” Int. J. Mod. Phys. B 30 (2015) no.2, 1550249 [arXiv:1507.01807 [physics.optics]].
  59. C. Duval and P. A. Horvathy, “Chiral fermions as classical massless spinning particles,” Phys. Rev. D 91 (2015) no.4, 045013 [arXiv:1406.0718 [hep-th]]; C. Duval, M. Elbistan, P. A. Horváthy and P. M. Zhang, “Wigner–Souriau translations and Lorentz symmetry of chiral fermions,” Phys. Lett. B 742 (2015), 322-326 [arXiv:1411.6541 [hep-th]].
  60. P. Zhang and P. A. Horváthy, “Anomalous Hall Effect for semiclassical chiral fermions,” Phys. Lett. A 379 (2014), 507-510 [arXiv:1409.4225 [hep-th]].
  61. M. Oancea and A. Kumar, “Semiclassical analysis of Dirac fields on curved spacetime,” [arXiv:2212.04414 [gr-qc]].
  62. P. Saturnini, “Un modèle de particule à spin de masse nulle dans le champ de gravitation.” Thèse de 3ème cycle. Marseille (1976) - unpublished”
  63. P. Gosselin, A. Berard and H. Mohrbach, “Spin Hall effect of photons in a static gravitational field,” Phys. Rev. D 75 (2007), 084035 [arXiv:hep-th/0603227 [hep-th]].
  64. A. I. Harte and M. A. Oancea, “Spin Hall effects and the localization of massless spinning particles,” Phys. Rev. D 105 (2022), 104061 [arXiv:2203.01753 [gr-qc]].
  65. C. Duval, L. Marsot and T. Schücker, “Gravitational birefringence of light in Schwarzschild spacetime,” Phys. Rev. D 99 (2019) no.12, 124037 [arXiv:1812.03014 [gr-qc]].
  66. J.-M. Lévy-Leblond, “Galilei group and Galilean invariance,” in Group Theory and Applications, Loebl Ed., II, Acad. Press, New York, p. 222 (1972).
  67. C. Duval and P. A. Horvathy, “Exotic Galilean symmetry in the noncommutative plane, and the Hall effect,” J. Phys. A 34 (2001), 10097-10108 [arXiv:hep-th/0106089 [hep-th]].
  68. C. Duval and P. A. Horvathy, “The ‘Peierls substitution’ and the exotic Galilei group,” Phys. Lett. B 479 (2000), 284-290 [arXiv:hep-th/0002233 [hep-th]].
  69. P. A. Horvathy, “The Noncommutative Landau problem,” Annals Phys. 299 (2002), 128-140 [arXiv:hep-th/0201007 [hep-th]].
  70. P. A. Horvathy and M. S. Plyushchay, “Non-relativistic anyons, exotic Galilean symmetry and noncommutative plane,” JHEP 06 (2002), 033 [arXiv:hep-th/0201228 [hep-th]].
  71. P. A. Horvathy, “Anomalous Hall Effect in non-commutative mechanics,” Phys. Lett. A 359 (2006), 705-706 [arXiv:cond-mat/0606472 [cond-mat]].
  72. M. C. Chang and Q. Niu, “Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands,” Phys. Rev. B 53 (1996), 7010-7023. [arXiv:cond-mat/9511014 [cond-mat]]. “Berry Phase, Hyperorbits, and the Hofstadter Spectrum,” Phys. Rev. Lett. 75 (1995), 1348-1351. [arXiv:cond-mat/9505021 [cond-mat]].
  73. C. Duval, Z. Horvath, P. A. Horvathy, L. Martina and P. Stichel, “Berry phase correction to electron density in solids and ’exotic’ dynamics,” Mod. Phys. Lett. B 20 (2006), 373-378 [arXiv:cond-mat/0506051 [cond-mat]] P. A. Horvathy, L. Martina and P. C. Stichel, “Exotic Galilean Symmetry and Non-Commutative Mechanics,” SIGMA 6 (2010), 060 [arXiv:1002.4772 [hep-th]].
  74. V. Bargmann, “On Unitary ray representations of continuous groups,” Annals Math. 59 (1954), 1-46
  75. Y. Brihaye, C. Gonera, S. Giller and P. Kosinski, “Galilean invariance in (2+1)-dimensions,” [arXiv:hep-th/9503046 [hep-th]].
  76. J. Lukierski, P. C. Stichel and W. J. Zakrzewski, “Galilean invariant (2+1)-dimensional models with a Chern-Simons-like term and D = 2 noncommutative geometry,” Annals Phys. 260 (1997), 224-249 [arXiv:hep-th/9612017 [hep-th]].
  77. L. Inzunza and M. S. Plyushchay, “Dynamics, symmetries, anomaly and vortices in a rotating cosmic string background,” JHEP 01 (2022), 179 [arXiv:2109.05161 [hep-th]].
  78. J. A. de Azcarraga, F. J. Herranz, J. C. Perez Bueno and M. Santander, “Central extensions of the quasiorthogonal Lie algebras,” J. Phys. A 31 (1998), 1373-1394 [arXiv:q-alg/9612021 [math.QA]].
  79. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, “Anomalous Hall effect”, Rev. Mod. Phys. 82, 1539 (2010).
  80. L. D. Faddeev and R. Jackiw, “Hamiltonian Reduction of Unconstrained and Constrained Systems,” Phys. Rev. Lett. 60 (1988), 1692-1694
  81. A. A. Kirillov. Èlementy teorii predstavleniĭ. Izdat. “Nauka”, Moscow, 1972. (Translation: Elements of the theory of representations, Springer-Verlag, Berlin, Heidelberg, 1976.).
  82. B. Kostant, “Quantization and Unitary Representations,” in Lectures in Modern Analysis and Applications III. ed. R.M. Dudley et al, Springer Lecture Notes in Mathematics (170), 87 (1970).
  83. L. P. Eisenhart, “Dynamical trajectories and geodesics”, Annals Math. 30 591-606 (1928).
  84. C. Duval, G. Burdet, H. P. Künzle and M. Perrin, “Bargmann structures and Newton-Cartan theory”, Phys. Rev. D 31 (1985) 1841.
  85. C. Duval, G. W. Gibbons and P. Horvathy, “Celestial mechanics, conformal structures and gravitational waves,” Phys. Rev. D 43 (1991), 3907-3922 [arXiv:hep-th/0512188 [hep-th]].
  86. A. Barducci, R. Casalbuoni and J. Gomis, “Confined dynamical systems with Carroll and Galilei symmetries,” Phys. Rev. D 98 (2018) no.8, 085018 [arXiv:1804.10495 [hep-th]].
  87. X. Bekaert and K. Morand, “Embedding nonrelativistic physics inside a gravitational wave,” Phys. Rev. D 88 (2013) no.6, 063008 [arXiv:1307.6263 [hep-th]]. K. Morand, “Embedding Galilean and Carrollian geometries I. Gravitational waves,” J. Math. Phys. 61 (2020) no.8, 082502 [arXiv:1811.12681 [hep-th]].
  88. L. Ciambelli, R. G. Leigh, C. Marteau and P. M. Petropoulos, “Carroll Structures, Null Geometry and Conformal Isometries,” Phys. Rev. D 100 (2019) no.4, 046010 [arXiv:1905.02221 [hep-th]].
  89. D. Finkelstein and J. Rubinstein, “Connection between spin, statistics, and kinks,” J. Math. Phys. 9 (1968), 1762-1779
  90. J. M. Leinaas and J. Myrheim, “On the theory of identical particles,” Nuovo Cim. B 37 (1977), 1-23.
  91. F. Wilczek, “Quantum Mechanics of Fractional Spin Particles,” Phys. Rev. Lett. 49 (1982), 957-959.
  92. N. M. Myers and S. Deffner, “Thermodynamics of Statistical Anyons”, PRX Quantum 2, 040312 (2021).
  93. Y. H. Chen, F. Wilczek, E. Witten and B. I. Halperin, “On Anyon Superconductivity,” Int. J. Mod. Phys. B 3 (1989), 1001.
  94. M. Banerjee, M. Heiblum, A. Rosenblatt, Y. Oreg, D. E. Feldman, A. Stern, V. Umansky, “Observed Quantization of Anyonic Heat Flow,” Nature 545, 75 (2017).
  95. A. Stern, “Anyons and the quantum Hall effect - a pedagogical review,” Annals of Phys. 323, 204 (2008).
  96. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma “Non-Abelian anyons and topological quantum computation,” Rev. Mod. Phys. 80, 1083 (2008).
  97. E. Cartan, “Sur les variétés à connexion affine et la théorie de la relativité généralisée. (première partie)”, Annales Sci. Ecole Norm. Sup. 40, p. 325 (1923).
  98. A. Trautman, “Sur la théorie newtonienne de la gravitation”, C.R. Acad. Sci. Paris 257, p. 617 (1963).
  99. P. Havas, “Four-Dimensional Formulations of Newtonian Mechanics and Their Relation to the Special and the General Theory of Relativity”, Rev. Mod. Phys. 36, p. 938, (1964).
  100. A. Trautman, “Comparison of Newtonian and relativistic theories of space-time”, Perspectives in Geometry and Relativity. Hoffmann, Banesh (ed.). Bloomington, Ind., Indiana University Press, 1966., p. 413 (1967).
  101. H. P. Künzle, “Galilei and lorentz structures on space-time - comparison of the corresponding geometry and physics”, Ann. Inst. H. Poincare Phys. Theor. 17, p. 337 (1972).
  102. C. Duval and P. A. Horvathy, “Non-relativistic conformal symmetries and Newton-Cartan structures,” J. Phys. A 42 (2009), 465206 [arXiv:0904.0531 [math-ph]].
  103. R. Penrose, “Structure of space-time,” in C. de Witt-Morette and J. A. Wheeler eds, Battelle Rencontres, Lectures in mathematics and physics, Seattle, Washington, US, (1967)
  104. J.-M. Souriau. Physics and geometry. Found. Phys., 13(1):133–151, 1983. https://doi.org/10.1007/BF01889416. (Reprint: in A. O. Barut, A. van der Merwe and J.-P. Vigier (eds), Quantum, space and time — the quest continues: studies and essays in honor of Louis de Broglie, Paul Dirac and Eugene Wigner, pp. 376–394. Cambridge University Press, 1984.).
  105. J.-M. Souriau, Des particules aux ondes: quantification géométrique. In H. Blok, H. A. Ferwerda, and H. K. Kuiken, editors, Huygens’ principle 1690–1990: theory and applications (The Hague and Scheveningen, 1990), volume 3 of Studies in Mathematical Physics, pages 299–341. North-Holland, Amsterdam, 1992.
  106. J.-M. Lévy-Leblond, “Group-Theoretical Foundations of Classical Mechanics: The Lagrangian Gauge Problem”, Commun. Math. Phys. 12, p. 64, (1969).
  107. P. Iglesias, “Principes variationnels et géométrie symplectique”, http://math.huji.ac.il/~piz/documents/PVGS.pdf.
  108. J.-M. Souriau, “La structure symplectique de la mécanique décrite par Lagrange en 1811,” in Journée d’Histoire des Sciences de Marseille “Mécanique et mathématiques”. Vieille Charité, 4-5 oct. 1985. Mathématiques et sciences humaines, 94 (1986), p.45. http://www.numdam.org/item?id=MSH1986−−−94−−45−0{}_{-}1986_{--}94_{--}45-0start_FLOATSUBSCRIPT - end_FLOATSUBSCRIPT 1986 start_POSTSUBSCRIPT - - end_POSTSUBSCRIPT 94 start_POSTSUBSCRIPT - - end_POSTSUBSCRIPT 45 - 0,
  109. M. Born and E. Wolf. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. Pergamon Press, New York, 1959.
  110. M. Herzberger. Geometrical optics. In E. U. Condon and H. Odishaw, editors, Handbook of Physics, pages 6.20–6.47. McGraw-Hill, New York, 2nd edition, 1967.
  111. P. Horvathy, “Variational Formalism for Spin Particles,” J. Math. Phys. 20 (1979), 49-52
  112. C. Duval, “Finsler Spinoptics,” Commun. Math. Phys. 283 (2008), 701-727 [arXiv:0707.0200 [math-ph]].
  113. P. D. Alvarez, J. Gomis, K. Kamimura, M. S. Plyushchay, “Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton-Hooke symmetry,” Phys. Lett. B 659, 906 (2008) [arXiv:0711.2644]. “(2+1)D Exotic Newton-Hooke Symmetry, Duality and Projective Phase,” Annals Phys. 322 (2007) 1556 [hep-th/0702014].
  114. P. M. Zhang and P. A. Horvathy, “Chiral Decomposition in the Non-Commutative Landau Problem,” Annals Phys. 327 (2012), 1730-1743 [arXiv:1112.0409 [hep-th]].
  115. M. S. Plyushchay, “Relativistic model of anyon,” Phys. Lett. B 248 (1990), 107-112 R. Jackiw and V. P. Nair, “Relativistic wave equations for anyons,” Phys. Rev. D 43 (1991), 1933-1942 Their result was anticipated by L Fehér,“On the coadjoint orbits of the planar Poincaré group,” unpublished notes (1986) which entered L. Fehér’s doctoral dissertation. Szeged (1988). J. Negro, M. A. del Olmo and J. Tosiek, “Anyons, group theory and planar physics,” J. Math. Phys. 47 (2006), 033508 [arXiv:math-ph/0512007 [math-ph]].
  116. R. Jackiw and V. P. Nair, “Anyon spin and the exotic central extension of the planar Galilei group,” Phys. Lett. B 480 (2000), 237-238 [arXiv:hep-th/0003130 [hep-th]].
  117. C. Duval and P. A. Horvathy, “Spin and exotic Galilean symmetry,” Phys. Lett. B 547 (2002), 306-312 [erratum: Phys. Lett. B 588 (2004), 228-228] [arXiv:hep-th/0209166 [hep-th]].
  118. P. A. Horvathy, “Noncommuting coordinates in the Hall effect and in vortex dynamics,” [arXiv:hep-th/0307175 [hep-th]].
  119. D. Doshi and A. Gromov, “Vortices and Fractons,” [arXiv:2005.03015 [cond-mat.str-el]].
  120. L. Feng and Q. Wu, “Four-vector optical Dirac equation and spin-orbit interaction of structured light,” Phys. Rev. A 106 (2022) no.4, 043513 [arXiv:2203.14664 [physics.optics]]. Wu, Q., Zhu, W., Feng, L. “Testing the Wave-Particle Duality of Gravitational Wave Using the Spin-Orbital-Hall Effect of Structured Light,” Universe 2022, 8, 535. https://doi.org/10.3390/ universe8100535
  121. C. Duval and P. A. Horvathy, “Anyons with anomalous gyromagnetic ratio and the Hall effect,” Phys. Lett. B 594 (2004), 402-409 [arXiv:hep-th/0402191 [hep-th]].
  122. Lewis Carroll, Through the Looking Glass and what Alice Found There. London: MacMillan (1871).
  123. J. M. Levy-Leblond, “Nonrelativistic particles and wave equations,” Commun. Math. Phys. 6 (1967), 286-311
  124. J. Gomis and M. Novell, “A Pseudoclassical Description for a Nonrelativistic Spinning Particle. 1. The Levy-leblond Equation,” Phys. Rev. D 33 (1986), 2212
  125. C. Duval, “The Dirac and the Levy-Leblond equations and geometric quantization,” Lect. Notes Math. 1251 (1987), 205-221
  126. J. P. Gauntlett, J. Gomis and P. K. Townsend, “Supersymmetry and the physical phase space formulation of spinning particles,” Phys. Lett. B 248 (1990), 288-294
  127. P. A. Horvathy, “Non-Relativistic Conformal and Supersymmetries,” Int. J. Mod. Phys. A 3 (1993), 339-342 [arXiv:0807.0513 [hep-th]].
  128. Y. M. Cho and D. H. Park, “Fermionic vortex solutions in Chern-Simons electrodynamics,” Phys. Rev. D 45 (1992), 3802-3806
  129. C. Duval, P. A. Horvathy and L. Palla, “Spinor vortices in nonrelativistic Chern-Simons theory,” Phys. Rev. D 52 (1995), 4700-4703 [arXiv:hep-th/9503061 [hep-th]].
  130. C. Duval, P. A. Horvathy and L. Palla, “Spinors in nonrelativistic Chern-Simons electrodynamics,” Annals Phys. 249 (1996), 265-297 [arXiv:hep-th/9510114 [hep-th]].
  131. W. Kohn, “Cyclotron Resonance and de Haas-van Alphen Oscillations of an Interacting Electron Gas,” Phys. Rev. 123 (1961), 1242-1244
  132. P. M. Zhang and P. A. Horvathy, “Kohn’s theorem and Galilean symmetry,” Phys. Lett. B 702 (2011), 177-180 [arXiv:1105.4401 [hep-th]].
  133. P. M. Zhang and P. A. Horvathy, “Kohn condition and exotic Newton-Hooke symmetry in the non-commutative Landau problem,” Phys. Lett. B 706 (2012), 442-446 [arXiv:1111.1595 [hep-th]].
  134. P. M. Zhang, P. A. Horvathy, K. Andrzejewski, J. Gonera and P. Kosinski, “Newton-Hooke type symmetry of anisotropic oscillators,” Annals Phys. 333 (2013), 335-359 [arXiv:1207.2875 [hep-th]].
  135. P. Iglesias-Zemmour, F. Ziegler, “Primary Spaces, Mackey’s Obstruction, and the Generalized Barycentric Decomposition,” J. Symplectic Geom. 13 (2015), no. 1, 51-76 https://doi.org/10.4310/JSG.2015.v13.n1.a3 [arXiv:1203.5723 [math.SG]]
  136. J. Lukierski, P. C. Stichel and W. J. Zakrzewski, “Exotic Galilean conformal symmetry and its dynamical realisations,” Phys. Lett. A 357 (2006), 1-5 doi:10.1016/j.physleta.2006.04.016 [arXiv:hep-th/0511259 [hep-th]] J. Lukierski, P. C. Stichel and W. J. Zakrzewski, “Acceleration-extended Galilean symmetries with central charges and their dynamical realizations,” Phys. Lett. B 650 (2007), 203-207 doi:10.1016/j.physletb.2007.04.058 [arXiv:hep-th/0702179 [hep-th]] J. Lukierski, P. C. Stichel and W. J. Zakrzewski, “Acceleration-enlarged symmetries in nonrelativistic space-time with a cosmological constant,” Eur. Phys. J. C 55 (2008), 119-124 doi:10.1140/epjc/s10052-008-0576-8 [arXiv:0710.3093 [hep-th]].
  137. R. Casalbuoni, D. Dominici and J. Gomis, “Two interacting conformal Carroll particles,” [arXiv:2306.02614 [hep-th]].
  138. P. M. Zhang, H. X. Zeng and P. A. Horvathy, “MultiCarroll dynamics,” [arXiv:2306.07002 [gr-qc]].
  139. P. M. Zhang and P. A. Horvathy, “Kohn’s theorem and Galilean symmetry,” Phys. Lett. B 702 (2011), 177-180 doi:10.1016/j.physletb.2011.06.081 [arXiv:1105.4401 [hep-th]].
  140. P. M. Zhang, P. A. Horvathy, K. Andrzejewski, J. Gonera and P. Kosinski, “Newton-Hooke type symmetry of anisotropic oscillators,” Annals Phys. 333 (2013), 335-359 doi:10.1016/j.aop.2012.11.018 [arXiv:1207.2875 [hep-th]].
  141. A. Gromov and L. Radzihovsky, “Fracton Matter,” [arXiv:2211.05130 [cond-mat.str-el]].
  142. Euclide, Optica. Alexandria, –300. (Translation: The optics of Euclid. J. Opt. Soc. Amer. 35 (1945), no. 5, 357–372.).
  143. M. Le Bellac and J-M. Lévy-Leblond, “Galilean electromagnetism” Il Nuovo Cimento, 14B, 217 (1973).
  144. A. D. Linde, “Infrared Problem in Thermodynamics of the Yang-Mills Gas,” Phys. Lett. B 96 (1980), 289-292.
  145. K. Jensen and A. Raz, “Large N𝑁Nitalic_N fractons,” [arXiv:2205.01132 [hep-th]].
  146. G. Tarnopolsky, A. J. Kruchkov and A. Vishwanath, “Origin of Magic Angles in Twisted Bilayer Graphene,” [arXiv:1808.05250 [cond-mat.str-el]].
  147. Y. Cao et al, “Unconventional superconductivity in magic-angle graphene superlattices,” Nature 556, 43 (2018).
  148. A. Bagchi, A. Banerjee, R. Basu, M. Islam and S. Mondal, “Magic Fermions: Carroll and Flat Bands,” [arXiv:2211.11640 [hep-th]].
  149. J. Figueroa-O’Farrill, A. Pérez and S. Prohazka, “Carroll/fracton particles and their duality,” [arXiv:2305.06730 [hep-th]].
  150. J.-M. Souriau, “Quantification géométrique. Applications,” Ann. Inst. H. Poincaré Sect. A (N.S.) 6 311-341 (1967)
  151. T. T. Wu and C. N. Yang, “Dirac Monopole Without Strings: Monopole Harmonics,” Nucl. Phys. B 107 (1976), 365
  152. C. N. Yang, “Magnetic Monopoles, Gauge Fields and Fiber Bundles,” Annals N. Y. Acad. Sci. 294 (1979), 86-97
  153. A. P. Balachandran, G. Marmo and A. Stern, “Magnetic Monopoles With No Strings,” Nucl. Phys. B 162 (1980), 385-396
  154. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197 (2005) [arXiv:cond-mat/0509330 [cond-mat.mes-hall]].
  155. Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, “Experimental observation of the quantum Hall effect and and Berry’s phase in graphene,” Nature 438, 201-204 (2005)
  156. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109-162 (2009) [arXiv:0709.1163 [cond-mat.other]].
  157. A. Nogaret, “Electron dynamics in inhomogeneous magnetic fields,” Journal of Physics: Condensed Matter, 22, 253201 (2010).
  158. N. F. Bell, M. Gorchtein, M. J. Ramsey-Musolf, P. Vogel and P. Wang, “Model independent bounds on magnetic moments of Majorana neutrinos,” Phys. Lett. B 642, 377-383 (2006). [arXiv:hep-ph/0606248 [hep-ph]].
  159. N. F. Bell, V. Cirigliano, M. J. Ramsey-Musolf, P. Vogel and M. B. Wise, “How magnetic is the Dirac neutrino?,” Phys. Rev. Lett. 95, 151802 (2005) [arXiv:hep-ph/0504134 [hep-ph]].
  160. A. Heger, A. Friedland, M. Giannotti and V. Cirigliano, “The Impact of Neutrino Magnetic Moments on the Evolution of Massive Stars,” Astrophys. J. 696, 608-619 (2009) [arXiv:0809.4703 [astro-ph]].
  161. O. R. Baldwin and G. B. Jeffery, “The Relativity Theory of Plane Waves,” Proc. R. Soc. London A111, 95 (1926); N. Rosen, “Plane polarized waves in the general theory of relativity,” Phys. Z. Sowjetunion, 12, 366 (1937).
  162. H. Bondi, F. A. E. Pirani and I. Robinson, “Gravitational waves in general relativity. 3. Exact plane waves,” Proc. Roy. Soc. Lond. A 251 (1959) 519.
  163. M. W. Brinkmann, “On Riemann spaces conformal to Euclidean spaces,” Proc. Natl. Acad. Sci. U.S. 9 (1923) 1–3; “Einstein spaces which are mapped conformally on each other,” Math. Ann. 94 (1925) 119–145. Brinkmann
  164. G. W. Gibbons, “Quantized Fields Propagating in Plane Wave Space-Times,” Commun. Math. Phys.  45 (1975) 191.
  165. E. T. Newman, R. Couch, K. Chinnapared, A. Exton, A. Prakash and R. Torrence, “Metric of a Rotating, Charged Mass,” J. Math. Phys. 6 (1965), 918-919
  166. S. Vijay, J. Haah and L. Fu, “Fracton Topological Order, Generalized Lattice Gauge Theory and Duality,” Phys. Rev. B 94 (2016) no.23, 235157 [arXiv:1603.04442 [cond-mat.str-el]].
  167. F. Gray, D. Kubiznak, T. R. Perche and J. Redondo-Yuste, “Carrollian motion in magnetized black hole horizons,” Phys. Rev. D 107 (2023) no.6, 064009 J. Bičák, D. Kubizňák and T. R. Perche, “Migrating Carrollian particles on magnetized black hole horizons,” Phys. Rev. D 107 (2023) no.10, 104014 doi:10.1103/PhysRevD.107.104014 [arXiv:2302.11639 [gr-qc]].
  168. R. A. Tinguely and Andrew P. Turner, “Optical analogues to the equatorial Kerr-Newman black hole,” Commun Phys 3, 120 (2020). https://doi.org/10.1038/s42005-020-0384-5
Citations (37)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.