Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An adaptive time-stepping fully discrete scheme for stochastic NLS equation: Strong convergence and numerical asymptotics (2212.01988v1)

Published 5 Dec 2022 in math.NA, cs.NA, and math.PR

Abstract: In this paper, we propose and analyze an adaptive time-stepping fully discrete scheme which possesses the optimal strong convergence order for the stochastic nonlinear Schr\"odinger equation with multiplicative noise. Based on the splitting skill and the adaptive strategy, the $H1$-exponential integrability of the numerical solution is obtained, which is a key ingredient to derive the strong convergence order. We show that the proposed scheme converges strongly with orders $\frac12$ in time and $2$ in space. To investigate the numerical asymptotic behavior, we establish the large deviation principle for the numerical solution. This is the first result on the study of the large deviation principle for the numerical scheme of stochastic partial differential equations with superlinearly growing drift. And as a byproduct, the error of the masses between the numerical and exact solutions is finally obtained.

Citations (2)

Summary

We haven't generated a summary for this paper yet.