Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Connected Cruise and Traffic Control for Pairs of Connected Automated Vehicles (2212.01756v2)

Published 4 Dec 2022 in eess.SY, cs.RO, cs.SY, and math.DS

Abstract: This paper considers mixed traffic consisting of connected automated vehicles equipped with vehicle-to-everything (V2X) connectivity and human-driven vehicles. A control strategy is proposed for communicating pairs of connected automated vehicles, where the two vehicles regulate their longitudinal motion by responding to each other, and, at the same time, stabilize the human-driven traffic between them. Stability analysis is conducted to find stabilizing controllers, and simulations are used to show the efficacy of the proposed approach. The impact of the penetration of connectivity and automation on the string stability of traffic is quantified. It is shown that, even with moderate penetration, connected automated vehicle pairs executing the proposed controllers achieve significant benefits compared to when these vehicles are disconnected and controlled independently.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. P. Nilsson, O. Hussien, A. Balkan, Y. Chen, A. D. Ames, J. W. Grizzle, N. Ozay, H. Peng, and P. Tabuada, “Correct-by-construction adaptive cruise control: Two approaches,” IEEE Transactions on Control Systems Technology, vol. 24, no. 4, pp. 1294–1307, 2016.
  2. A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2017.
  3. G. Gunter, D. Gloudemans, R. E. Stern, S. McQuade, R. Bhadani, M. Bunting, M. L. Delle Monache, R. Lysecky, B. Seibold, J. Sprinkle, B. Piccoli, and D. B. Work, “Are commercially implemented adaptive cruise control systems string stable?” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 11, pp. 6992–7003, 2021.
  4. Y. Wang, Z. Wang, K. Han, P. Tiwari, and D. B. Work, “Personalized adaptive cruise control via Gaussian process regression,” in 24th IEEE International Conference on Intelligent Transportation Systems, 2021, pp. 1496–1502.
  5. N. Bekiaris-Liberis, C. Roncoli, and M. Papageorgiou, “Predictor-based adaptive cruise control design,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 10, pp. 3181–3195, 2018.
  6. S. Siri, C. Pasquale, S. Sacone, and A. Ferrara, “Freeway traffic control: A survey,” Automatica, vol. 130, p. 109655, 2021.
  7. M. Čičić and K. H. Johansson, “Traffic regulation via individually controlled automated vehicles: a cell transmission model approach,” in 21st IEEE International Conference on Intelligent Transportation Systems, 2018, pp. 766–771.
  8. G. Piacentini, M. Čičić, A. Ferrara, and K. H. Johansson, “VACS equipped vehicles for congestion dissipation in multi-class CTM framework,” in 18th European Control Conference, 2019, pp. 2203–2208.
  9. S. Cui, B. Seibold, R. Stern, and D. B. Work, “Stabilizing traffic flow via a single autonomous vehicle: Possibilities and limitations,” in IEEE Intelligent Vehicles Symposium, 2017, pp. 1336–1341.
  10. H. Yu, S. Koga, and M. Krstic, “Stabilization of traffic flow with a leading autonomous vehicle,” in ASME Dynamic Systems and Control Conference, no. V002T22A006, 2018.
  11. Y. Zheng, J. Wang, and K. Li, “Smoothing traffic flow via control of autonomous vehicles,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 3882–3896, 2020.
  12. V. Giammarino, S. Baldi, P. Frasca, and M. L. D. Monache, “Traffic flow on a ring with a single autonomous vehicle: An interconnected stability perspective,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, pp. 4998–5008, 2021.
  13. N. Lichtlé, E. Vinitsky, M. Nice, B. Seibold, D. Work, and A. M. Bayen, “Deploying traffic smoothing cruise controllers learned from trajectory data,” in International Conference on Robotics and Automation, 2022, pp. 2884–2890.
  14. S. Wang, R. Stern, and M. W. Levin, “Optimal control of autonomous vehicles for traffic smoothing,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 4, pp. 3842–3852, 2022.
  15. R. E. Stern, S. Cui, M. L. Delle Monache, R. Bhadani, M. Bunting, M. Churchill, N. Hamilton, R. Haulcy, H. Pohlmann, F. Wu, B. Piccoli, B. Seibold, J. Sprinkle, and D. B. Work, “Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments,” Transportation Research Part C, vol. 89, pp. 205–221, 2018.
  16. I. Karafyllis, D. Theodosis, and M. Papageorgiou, “Nonlinear adaptive cruise control of vehicular platoons,” International Journal of Control, pp. 1–23, 2021.
  17. S. Feng, Z. Song, Z. Li, Y. Zhang, and L. Li, “Robust platoon control in mixed traffic flow based on tube model predictive control,” IEEE Transactions on Intelligent Vehicles, vol. 6, no. 4, pp. 711–722, 2021.
  18. M. Čičić, X. Xiong, L. Jin, and K. H. Johansson, “Coordinating vehicle platoons for highway bottleneck decongestion and throughput improvement,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 8959–8971, 2022.
  19. V. Turri, B. Besselink, and K. H. Johansson, “Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning,” IEEE Transactions on Control Systems Technology, vol. 25, no. 1, pp. 12–28, 2017.
  20. L. Bertoni, J. Guanetti, M. Basso, M. Masoero, S. Cetinkunt, and F. Borrelli, “An adaptive cruise control for connected energy-saving electric vehicles,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 2359–2364, 2017.
  21. B. McAuliffe, M. Lammert, X.-Y. Lu, S. Shladover, M.-D. Surcel, and A. Kailas, “Influences on energy savings of heavy trucks using cooperative adaptive cruise control,” in WCX World Congress Experience.   SAE International, 2018.
  22. Z. Wang, G. Wu, and M. J. Barth, “A review on cooperative adaptive cruise control (CACC) systems: Architectures, controls, and applications,” in 21st IEEE International Conference on Intelligent Transportation Systems, 2018, pp. 2884–2891.
  23. E. van Nunen, J. Reinders, E. Semsar-Kazerooni, and N. van de Wouw, “String stable model predictive cooperative adaptive cruise control for heterogeneous platoons,” IEEE Transactions on Intelligent Vehicles, vol. 4, no. 2, pp. 186–196, 2019.
  24. S. E. Shladover, D. Su, and X.-Y. Lu, “Impacts of cooperative adaptive cruise control on freeway traffic flow,” Transportation Research Record, vol. 2324, no. 1, pp. 63–70, 2012.
  25. M. A. Silgu, I. G. Erdagi, G. Göksu, and H. B. Celikoglu, “Combined control of freeway traffic involving cooperative adaptive cruise controlled and human driven vehicles using feedback control through SUMO,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–15, 2021.
  26. G. Orosz, “Connected cruise control: modeling, delay effects, and nonlinear behavior,” Vehicle System Dynamics, vol. 54, no. 8, pp. 1147–1176, 2016.
  27. L. Zhang and G. Orosz, “Motif-based design for connected vehicle systems in presence of heterogeneous connectivity structures and time delays,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 6, pp. 1638–1651, 2016.
  28. J. I. Ge, S. S. Avedisov, C. R. He, W. B. Qin, M. Sadeghpour, and G. Orosz, “Experimental validation of connected automated vehicle design among human-driven vehicles,” Transportation Research Part C, vol. 91, pp. 335–352, 2018.
  29. T. G. Molnár, D. Upadhyay, M. Hopka, M. Van Nieuwstadt, and G. Orosz, “Open and closed loop traffic control by connected automated vehicles,” in 59th IEEE Conference on Decision and Control, 2020, pp. 239–244.
  30. T. G. Molnár, M. Hopka, D. Upadhyay, M. Van Nieuwstadt, and G. Orosz, “Virtual rings on highways: Traffic control by connected automated vehicles,” in AI-enabled Technologies for Autonomous and Connected Vehicles.   Springer, 2022, pp. 441–479.
  31. J. Wang, Y. Zheng, C. Chen, Q. Xu, and K. Li, “Leading cruise control in mixed traffic flow: System modeling, controllability, and string stability,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–16, 2021.
  32. J. Wang, Y. Zheng, K. Li, and Q. Xu, “DeeP-LCC: Data-EnablEd predictive leading cruise control in mixed traffic flow,” arXiv preprint, no. arXiv:2203.10639, 2022.
  33. T. Ard, B. Pattel, A. Vahidi, and H. Borhan, “Considerate and cooperative model predictive control for energy-efficient truck platooning of heterogeneous fleets,” in American Control Conference, 2022, pp. 1727–1732.
  34. S. S. Avedisov, G. Bansal, and G. Orosz, “Impacts of connected automated vehicles on freeway traffic patterns at different penetration levels,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 5, pp. 4305–4318, 2022.
  35. S. Feng, Y. Zhang, S. E. Li, Z. Cao, H. X. Liu, and L. Li, “String stability for vehicular platoon control: Definitions and analysis methods,” Annual Reviews in Control, vol. 47, pp. 81–97, 2019.
  36. M. Bando, K. Hasebe, K. Nakanishi, and A. Nakayama, “Analysis of optimal velocity model with explicit delay,” Physical Review E, vol. 58, no. 5, pp. 5429–5435, 1998.
  37. S. S. Avedisov, G. Bansal, A. K. Kiss, and G. Orosz, “Experimental verification platform for connected vehicle networks,” in 21st IEEE International Conference on Intelligent Transportation Systems, 2018, pp. 818–823.
  38. C. R. He, J. I. Ge, and G. Orosz, “Fuel efficient connected cruise control for heavy-duty trucks in real traffic,” IEEE Transactions on Control Systems Technology, vol. 28, no. 6, pp. 2474–2481, 2020.
  39. D. Hajdu, J. I. Ge, T. Insperger, and G. Orosz, “Robust design of connected cruise control among human-driven vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 2, pp. 749–761, 2020.
  40. T. G. Molnár, X. A. Ji, S. Oh, D. Takács, M. Hopka, D. Upadhyay, M. Van Nieuwstadt, and G. Orosz, “On-board traffic prediction for connected vehicles: Implementation and experiments on highways,” in American Control Conference, 2022, pp. 1036–1041.
  41. S. Van De Hoef, J. Mårtensson, D. V. Dimarogonas, and K. H. Johansson, “A predictive framework for dynamic heavy-duty vehicle platoon coordination,” ACM Transactions on Cyber-Physical Systems, vol. 4, no. 1, pp. 1–25, 2020.
  42. L. Jin, M. Čičić, K. H. Johansson, and S. Amin, “Analysis and design of vehicle platooning operations on mixed-traffic highways,” IEEE Transactions on Automatic Control, vol. 66, no. 10, pp. 4715–4730, 2021.
  43. L. N. Cooper, “Bound electron pairs in a degenerate Fermi gas,” Physical Review, vol. 104, no. 4, pp. 1189–1190, 1956.
Citations (12)

Summary

We haven't generated a summary for this paper yet.