Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantify the Causes of Causal Emergence: Critical Conditions of Uncertainty and Asymmetry in Causal Structure (2212.01551v3)

Published 3 Dec 2022 in cs.IT, cs.AI, math.IT, and physics.comp-ph

Abstract: Beneficial to advanced computing devices, models with massive parameters are increasingly employed to extract more information to enhance the precision in describing and predicting the patterns of objective systems. This phenomenon is particularly pronounced in research domains associated with deep learning. However, investigations of causal relationships based on statistical and informational theories have posed an interesting and valuable challenge to large-scale models in the recent decade. Macroscopic models with fewer parameters can outperform their microscopic counterparts with more parameters in effectively representing the system. This valuable situation is called "Causal Emergence." This paper introduces a quantification framework, according to the Effective Information and Transition Probability Matrix, for assessing numerical conditions of Causal Emergence as theoretical constraints of its occurrence. Specifically, our results quantitatively prove the cause of Causal Emergence. By a particular coarse-graining strategy, optimizing uncertainty and asymmetry within the model's causal structure is significantly more influential than losing maximum information due to variations in model scales. Moreover, by delving into the potential exhibited by Partial Information Decomposition and Deep Learning networks in the study of Causal Emergence, we discuss potential application scenarios where our quantification framework could play a role in future investigations of Causal Emergence.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. S. Lloyd, “Computational capacity of the universe,” Physical Review Letters, vol. 88, no. 23, p. 237901, 2002.
  2. Y. Yue, “A world-self model towards understanding intelligence,” IEEE Access, vol. 10, pp. 63034–63048, 2022.
  3. L. A. Paul and E. J. Hall, Causation: A user’s guide. Oxford University Press, 2013.
  4. J. Pearl, “Causal inference in statistics: An overview,” 2009.
  5. J. Pearl and D. Mackenzie, The book of why: the new science of cause and effect. Basic books, 2018.
  6. PEARSON EDUCATION Limited, 2019.
  7. A. Einstein, “Uber einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt,” Collected Papers of Albert Einstein, vol. 2, pp. 150–166, 1989.
  8. S. C. Pepper, “Emergence,” The Journal of Philosophy, vol. 23, no. 9, pp. 241–245, 1926.
  9. Y. Bar-Yam, “A mathematical theory of strong emergence using multiscale variety,” Complexity, vol. 9, no. 6, pp. 15–24, 2004.
  10. P. W. Anderson, “More is different: Broken symmetry and the nature of the hierarchical structure of science.,” Science, vol. 177, no. 4047, pp. 393–396, 1972.
  11. B. Klein and E. Hoel, “The emergence of informative higher scales in complex networks,” Complexity, vol. 2020, pp. 1–12, 2020.
  12. U. Baysan, “Causal emergence and epiphenomenal emergence,” Erkenntnis, vol. 85, no. 4, pp. 891–904, 2020.
  13. J. Pearl et al., “Models, reasoning and inference,” Cambridge, UK: CambridgeUniversityPress, vol. 19, no. 2, p. 3, 2000.
  14. S. Kivelson and S. A. Kivelson, “Defining emergence in physics,” npj Quantum Materials, vol. 1, no. 1, pp. 1–2, 2016.
  15. J. Fromm, “Types and forms of emergence,” arXiv preprint nlin/0506028, 2005.
  16. D. C. Montgomery, Design and analysis of experiments. John wiley & sons, 2017.
  17. H. P. Williams, Model building in mathematical programming. John Wiley & Sons, 2013.
  18. R. Mead, Statistical methods in agriculture and experimental biology. CRC Press, 2017.
  19. E. P. Hoel, L. Albantakis, and G. Tononi, “Quantifying causal emergence shows that macro can beat micro,” Proceedings of the National Academy of Sciences, vol. 110, no. 49, pp. 19790–19795, 2013.
  20. E. P. Hoel, “When the map is better than the territory,” Entropy, vol. 19, no. 5, p. 188, 2017.
  21. P. Chvykov and E. Hoel, “Causal geometry,” Entropy, vol. 23, no. 1, p. 24, 2020.
  22. F. E. Rosas, P. A. Mediano, H. J. Jensen, A. K. Seth, A. B. Barrett, R. L. Carhart-Harris, and D. Bor, “Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate data,” PLoS computational biology, vol. 16, no. 12, p. e1008289, 2020.
  23. L. Yao, Z. Chu, S. Li, Y. Li, J. Gao, and A. Zhang, “A survey on causal inference,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 15, no. 5, pp. 1–46, 2021.
  24. H. Zenil, N. A. Kiani, and J. Tegnér, “Low-algorithmic-complexity entropy-deceiving graphs,” Physical Review E, vol. 96, no. 1, p. 012308, 2017.
  25. C. Gong, D. Yao, C. Zhang, W. Li, and J. Bi, “Causal discovery from temporal data: An overview and new perspectives,” arXiv preprint arXiv:2303.10112, 2023.
  26. H. Zenil, N. A. Kiani, F. Marabita, Y. Deng, S. Elias, A. Schmidt, G. Ball, and J. Tegner, “An algorithmic information calculus for causal discovery and reprogramming systems,” Iscience, vol. 19, pp. 1160–1172, 2019.
  27. D. Balduzzi, “Information, learning and falsification,” arXiv preprint arXiv:1110.3592, 2011.
  28. D. P. Buxhoeveden and M. F. Casanova, “The minicolumn hypothesis in neuroscience,” Brain, vol. 125, no. 5, pp. 935–951, 2002.
  29. J. H. Kaas, “Why does the brain have so many visual areas?,” Journal of Cognitive Neuroscience, vol. 1, no. 2, pp. 121–135, 1989.
  30. C. Eliasmith, How to build a brain: A neural architecture for biological cognition. OUP USA, 2013.
  31. P. Andersen, R. Morris, D. Amaral, T. Bliss, and J. O’Keefe, “The hippocampal formation.,” 2007.
  32. R. Comolatti and E. Hoel, “Causal emergence is widespread across measures of causation,” arXiv preprint arXiv:2202.01854, 2022.
  33. J. Zhang and K. Liu, “Neural information squeezer for causal emergence,” Entropy, vol. 25, no. 1, p. 26, 2022.
  34. S. Marrow, E. J. Michaud, and E. Hoel, “Examining the causal structures of deep neural networks using information theory,” Entropy, vol. 22, no. 12, p. 1429, 2020.
  35. B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and Y. Bengio, “Toward causal representation learning,” Proceedings of the IEEE, vol. 109, no. 5, pp. 612–634, 2021.
  36. S. Edwards, “Elements of information theory, thomas m. cover, joy a. thomas, john wiley & sons, inc.(2006),” 2008.
  37. C. M. Bishop, Pattern Recognition and Machine Learning by Christopher M. Bishop. Springer Science+ Business Media, LLC, 2006.
  38. C. P. Robert, G. Casella, C. P. Robert, and G. Casella, “Markov chains,” Monte Carlo Statistical Methods, pp. 205–265, 2004.
  39. John Wiley & Sons, 2012.
  40. P. D. Grünwald, The minimum description length principle. MIT press, 2007.
  41. Cambridge university press, 2003.
  42. T. M. Cover, Elements of information theory. John Wiley & Sons, 1999.
  43. J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” in Proceedings of naacL-HLT, vol. 1, p. 2, 2019.
  44. T. Wu, S. He, J. Liu, S. Sun, K. Liu, Q.-L. Han, and Y. Tang, “A brief overview of chatgpt: The history, status quo and potential future development,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 5, pp. 1122–1136, 2023.
  45. J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin, “Mode connectivity and sparse neural networks,” 2019.
  46. P. L. Williams and R. D. Beer, “Nonnegative decomposition of multivariate information,” arXiv preprint arXiv:1004.2515, 2010.
  47. MIT press, 2016.
  48. S. J. Orfanidis, Introduction to signal processing. Prentice-Hall, Inc., 1995.
  49. S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.
  50. R. G. James, J. Emenheiser, and J. P. Crutchfield, “Unique information via dependency constraints,” Journal of Physics A: Mathematical and Theoretical, vol. 52, no. 1, p. 014002, 2018.
  51. K. H. Rosen, Discrete mathematics and its applications. The McGraw Hill Companies,, 2007.
  52. L. Thu Bui and S. Alam, Multi-objective optimization in computational intelligence: theory and practice: theory and practice. IGI global, 2008.
  53. P. Liu, X. Qiu, and X. Huang, “Deep multi-task learning with shared memory,” arXiv preprint arXiv:1609.07222, 2016.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com