Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Re-evaluating sample efficiency in de novo molecule generation (2212.01385v1)

Published 1 Dec 2022 in cs.CE and q-bio.BM

Abstract: De novo molecule generation can suffer from data inefficiency; requiring large amounts of training data or many sampled data points to conduct objective optimization. The latter is a particular disadvantage when combining deep generative models with computationally expensive molecule scoring functions (a.k.a. oracles) commonly used in computer-aided drug design. Recent works have therefore focused on methods to improve sample efficiency in the context of de novo molecule drug design, or to benchmark it. In this work, we discuss and adapt a recent sample efficiency benchmark to better reflect realistic goals also with respect to the quality of chemistry generated, which must always be considered in the context of small-molecule drug design; we then re-evaluate all benchmarked generative models. We find that accounting for molecular weight and LogP with respect to the training data, and the diversity of chemistry proposed, re-orders the ranking of generative models. In addition, we benchmark a recently proposed method to improve sample efficiency (Augmented Hill-Climb) and found it ranked top when considering both the sample efficiency and chemistry of molecules generated. Continual improvements in sample efficiency and chemical desirability enable more routine integration of computationally expensive scoring functions on a more realistic timescale.

Citations (6)

Summary

We haven't generated a summary for this paper yet.